My lecture at the Conference on Algebraic Complexity in the memory of Jacques Morgenstern, INRIA Sophia Antipolis, France May 1995.

Complexity Theory in the Service of Algorithm Design

Erich Kaltofen

Rensselaer

Rensselaer Polytechnic Institute
Department of Computer Science
Troy, New York, USA

Outline

- Wiedemann's sparse linear system solver
- Coordinate recurrences
- More applications of the transposition principle
- Reverse mode of automatic differentiation
- Transposition principle by derivatives
- More applications
- Polynomial factorization
- Berlekamp's polynomial factorization algorithm
- use of the Wiedemann method
- new baby step/giant step algorithm

A "black box" matrix

is an efficient procedure with the specifications

i.e., the matrix is not stored explicitly, its structure is unknown.

Main algorithmic problem: How to efficiently solve a linear system with a black box coefficient matrix?

Idea for Wiedemann's algorithm
$B \in \mathbb{F}^{n \times n}, \mathbb{F}$ a (possibly finite) field
$\phi^{B}(\lambda)=c_{0}^{\prime}+c_{1}^{\prime} \lambda+\cdots+c_{m}^{\prime} \lambda^{m} \in \mathbb{F}[\lambda]$ minimum polynomial of B :
$\forall u, v \in \mathbb{F}^{n}: \forall j \geq 0: u^{\operatorname{tr}} B^{j} \phi^{B}(B) v=0$

$$
\begin{gathered}
\Uparrow \downarrow \\
c_{0}^{\prime} \cdot \underbrace{u^{\operatorname{tr}} B^{j} v}_{a_{j}}+c_{1}^{\prime} \cdot \underbrace{u^{\operatorname{tr}} B^{j+1} v}_{a_{j+1}}+\cdots+c_{m}^{\prime} \cdot \underbrace{u^{j+m}}_{a_{j+m}^{\operatorname{tr}} B^{j+m} v}=0 \\
\Uparrow \\
\left\{a_{0}, a_{1}, a_{2}, \ldots\right\} \text { is generated by a linear recursion }
\end{gathered}
$$

Theorem (Wiedemann 1986): For random $u, v \in \mathbb{F}^{n}$, a linear generator for $\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$ is one for $\left\{I, B, B^{2}, \ldots\right\}$.

$$
\begin{gathered}
\forall j \geq 0: c_{0} a_{j}+c_{1} a_{j+1}+\cdots+c_{d} a_{j+d}=0 \\
\Downarrow(\text { with high probability }) \\
c_{0} B^{j} v+c_{1} B^{j+1} v+\cdots+c_{d} B^{j+d} v=0 \\
\Downarrow(\text { with high probability }) \\
c_{0} B^{j}+c_{1} B^{j+1}+\cdots+c_{d} B^{j+d}=0
\end{gathered}
$$

that is, $\phi^{B}(\lambda)$ divides $c_{0}+c_{1} \lambda+\cdots+c_{m} \lambda^{m}$

Algorithm Homogeneous Wiedemann

Input: $B \in \mathbb{F}^{n \times n}$ singular
Output: $w \neq \mathbf{0}$ such that $B w=\mathbf{0}$

Step W1: Pick random $u, v \in \mathbb{F}^{n} ; \quad b \leftarrow B v$; for $i \leftarrow 0$ to $2 n-1$ do $a_{i} \leftarrow u^{\operatorname{tr}} B^{i} b$.
(Requires $2 n$ black box calls.)

Step W2: Compute a linear recurrence generator for $\left\{a_{i}\right\}$, $c_{\ell} \lambda^{\ell}+c_{\ell+1} \lambda^{\ell+1}+\cdots+c_{d} \lambda^{d}, \quad \ell \geq 0, d \leq n, c_{\ell} \neq 0$, by the Berlekamp/Massey algorithm.

Step W3: $\widehat{w} \leftarrow c_{\ell} v+c_{\ell+1} B v+\cdots+c_{d} B^{d-\ell} v$;
(With high probability $\widehat{w} \neq 0$ and $B^{\ell+1} \widehat{w}=0$.)
Compute first k with $B^{k} \widehat{w}=0$; return $w \leftarrow B^{k-1} \widehat{w}$.

Steps W1 and W3 have the same computational complexity

$$
\begin{gathered}
u^{\operatorname{tr}} \cdot\left[v|B v| B^{2} v|\ldots| B^{2 n} v\right]=\left[\begin{array}{ccccc}
a_{-1} & a_{0} & a_{1} & \ldots & a_{2 n-1}
\end{array}\right] \\
\quad\left[v|B v| B^{2} v|\ldots| B^{2 n} v\right] \cdot\left[\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{2 n}
\end{array}\right]=w
\end{gathered}
$$

Fact: $X \cdot y$ and $X^{\operatorname{tr}} \cdot z$ have the same computational complexity [Kaminski et al., 1988].

