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Outline

• Wiedemann’s sparse linear system solver

◦ Coordinate recurrences

◦ More applications of the transposition principle

• Reverse mode of automatic differentiation

◦ Transposition principle by derivatives

◦ More applications

• Polynomial factorization

◦ Berlekamp’s polynomial factorization algorithm

◦ use of the Wiedemann method

◦ new baby step/giant step algorithm



A “black box” matrix

is an efficient procedure with the specifications

y ∈ F
n

−−−−−−−−−−−−→

B ∈ F
n×n

F an arbitrary field

B · y ∈ F
n

−−−−−−−−−−−−→

i.e., the matrix is not stored explicitly, its structure is unknown.

Main algorithmic problem: How to efficiently solve a linear system
with a black box coefficient matrix?



Idea for Wiedemann’s algorithm

B ∈ F
n×n, F a (possibly finite) field

φB(λ) = c′0 + c′1λ + · · · + c′mλm ∈ F[λ] minimum polynomial of B:

∀u, v ∈ F
n: ∀ j ≥ 0: utrBjφB(B)v = 0

~wÄ

c′0 · u
trBjv︸ ︷︷ ︸
aj

+c′1 · u
trBj+1v︸ ︷︷ ︸
aj+1

+ · · · + c′m · utrBj+mv︸ ︷︷ ︸
aj+m

= 0

~wÄ

{a0, a1, a2, . . .} is generated by a linear recursion



Theorem (Wiedemann 1986): For random u, v ∈ F
n,

a linear generator for {a0, a1, a2, . . .} is one for {I, B, B2, . . .}.

∀ j ≥ 0: c0aj + c1aj+1 + · · · + cdaj+d = 0

wwÄ (with high probability)

c0B
jv + c1B

j+1v + · · · + cdB
j+dv = 0

wwÄ (with high probability)

c0B
j + c1B

j+1 + · · · + cdB
j+d = 0

that is, φB(λ) divides c0 + c1λ + · · · + cmλm



Algorithm Homogeneous Wiedemann

Input: B ∈ F
n×n singular

Output: w 6= 0 such that Bw = 0

Step W1: Pick random u, v ∈ F
n; b ← Bv;

for i ← 0 to 2n − 1 do ai ← utrBib.
(Requires 2n black box calls.)

Step W2: Compute a linear recurrence generator for {ai},
cℓλ

ℓ + cℓ+1λ
ℓ+1 + · · · + cdλ

d, ℓ ≥ 0, d ≤ n, cℓ 6= 0,

by the Berlekamp/Massey algorithm.

Step W3: ŵ ← cℓv + cℓ+1Bv + · · · + cdB
d−ℓv;

(With high probability ŵ 6= 0 and Bℓ+1ŵ = 0.)

Compute first k with Bkŵ = 0; return w ← Bk−1ŵ.



Steps W1 and W3 have the same computational complexity

utr· [ v Bv B2v . . . B2nv ] = [ a−1 a0 a1 . . . a2n−1 ]

[ v Bv B2v . . . B2nv ] ·





c0

c1

...
c2n



 = w

Fact: X · y and Xtr · z have the same computational complexity
[Kaminski et al., 1988].


