Approximate Factorization of Complex Multivariate Polynomials

Erich Kaltofen

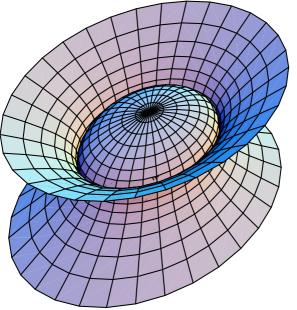
North Carolina State University http://www.kaltofen.us

Joint work with Shuhong Gao, John May, Zhengfeng Yang, and Lihong Zhi

May and Yang received the ACM SIGSAM's ISSAC 2004 Distinguished Student Author Award for this work

Factorization of noisy polynomials over the complex numbers [my '98 "Challenges"]

 $81x^4 + 16y^4 - 648z^4 + 72x^2y^2 - 648x^2 - 288y^2 + 1296 = 0$



 $(9x^2 + 4y^2 + 18\sqrt{2}z^2 - 36)(9x^2 + 4y^2 - 18\sqrt{2}z^2 - 36) = 0$

 $81x^{4} + 16y^{4} - 648.003z^{4} + 72x^{2}y^{2} + .002x^{2}z^{2} + .001y^{2}z^{2}$ $- 648x^{2} - 288y^{2} - .007z^{2} + 1296 = 0$

Conclusion on my exact algorithm [JSC 1(1)'85]

"D. Izraelevitz at Massachusetts Institute of Technology has already implemented a version of algorithm 1 using complex floating point arithmetic. Early experiments indicate that the linear systems computed in step (L) tend to be **numerically ill-conditioned.** How to overcome this numerical problem is an important question which we will investigate."

The Approximate Factorization Problem [LATIN '94] Given $f \in \mathbb{C}[x, y]$ irreducible, find $\tilde{f} \in \mathbb{C}[x, y]$ s.t. deg $\tilde{f} \leq \text{deg } f$, \tilde{f} factors, and $||f - \tilde{f}||$ is minimal.

The Approximate Factorization Problem [LATIN '94] Given $f \in \mathbb{C}[x, y]$ irreducible, find $\tilde{f} \in \mathbb{C}[x, y]$ s.t. deg $\tilde{f} \leq \text{deg } f$, \tilde{f} factors, and $||f - \tilde{f}||$ is minimal.

Problem depends on choice of norm $\|\cdot\|$, and notion of degree.

We use 2-norm, and multi-degree: mdeg $f = (\deg_x f, \deg_v f)$

The Approximate Factorization Problem [LATIN '94] Given $f \in \mathbb{C}[x, y]$ irreducible, find $\tilde{f} \in \mathbb{C}[x, y]$ s.t. deg $\tilde{f} \leq \text{deg } f$, \tilde{f} factors, and $||f - \tilde{f}||$ is minimal.

Problem depends on choice of norm $\|\cdot\|$, and notion of degree.

We use 2-norm, and multi-degree: mdeg $f = (\deg_x f, \deg_y f)$

Degree bound is important: $(1 + \delta x)f$ is reducible but for $\delta < \varepsilon/||f||$,

 $||(1+\delta x)f - f|| = ||\delta x f|| = \delta ||f|| < \varepsilon$

State of the Approximate Factorization

• No polynomial time algorithm (except for constant degree factors [Hitz, Kaltofen, Lakshman '99])

State of the Approximate Factorization

- No polynomial time algorithm (except for constant degree factors [Hitz, Kaltofen, Lakshman '99])
- Several algorithms and heuristics to find a nearby factorizable *f̂* if *f* is "nearly factorizable"
 [Corless et al. '01 & '02, Galligo and Rupprecht '01, Galligo and Watt '97, Huang et al. '00, Sasaki '01,...]

State of the Approximate Factorization

- No polynomial time algorithm (except for constant degree factors [Hitz, Kaltofen, Lakshman '99])
- Several algorithms and heuristics to find a nearby factorizable *f* if *f* is "nearly factorizable"
 [Corless et al. '01 & '02, Galligo and Rupprecht '01, Galligo and Watt '97, Huang et al. '00, Sasaki '01,...]
- There are lower bounds for $\min ||f \tilde{f}||$ ("irreducibility radius") [Kaltofen and May ISSAC 2003]

Our ISSAC'04 Results

• A new practical algorithm to compute approximate multivariate GCDs

Our ISSAC'04 Results

• A new practical algorithm to compute approximate multivariate GCDs

• A practical algorithm to find the factorization of a nearby factorizable polynomial given any *f*

especially "noisy" f: Given $f = f_1 f_2 + f_{noise}$, we find $\overline{f}_1, \overline{f}_2$ s.t. $||f_1 f_2 - \overline{f}_1 \overline{f}_2|| \approx ||f_{noise}||$

even for large noise: $||f_{\text{noise}}|| / ||f|| \ge 10^{-3}$

Maple Demonstration

Ruppert's Theorem

 $f \in \mathbb{K}[x, y]$, mdeg f = (m, n)

 \mathbb{K} is a field, algebraically closed, and characteristic 0

Theorem. *f* is reducible $\iff \exists g, h \in \mathbb{K}[x, y]$, non-zero,

$$\frac{\partial}{\partial y}\frac{g}{f} - \frac{\partial}{\partial x}\frac{h}{f} = 0$$

mdeg $g \leq (m-2,n)$, mdeg $h \leq (m,n-1)$

Ruppert's Theorem

 $f \in \mathbb{K}[x,y]$, mdeg f = (m,n)

 \mathbb{K} is a field, algebraically closed, and characteristic 0

Theorem. *f* is reducible $\iff \exists g, h \in \mathbb{K}[x, y]$, non-zero,

$$\frac{\partial}{\partial y}\frac{g}{f} - \frac{\partial}{\partial x}\frac{h}{f} = 0$$

mdeg $g \leq (m-2,n)$, mdeg $h \leq (m,n-1)$

PDE \rightsquigarrow linear system in the coefficients of *g* and *h*

Gao's PDE based Factorizer

Change degree bound: mdeg $g \le (m-1, n)$, mdeg $h \le (m, n-1)$

so that: # linearly indep. solutions to the PDE = # factors of f

Require square-freeness: $GCD(f, \frac{\partial f}{\partial x}) = 1$

Gao's PDE based Factorizer

Change degree bound: mdeg $g \le (m - 1, n)$, mdeg $h \le (m, n - 1)$ so that: # linearly indep. solutions to the PDE = # factors of fRequire square-freeness: $GCD(f, \frac{\partial f}{\partial x}) = 1$

Let

 $G = \operatorname{Span}_{\mathbb{C}} \{ g \mid [g,h] \text{ is a solution to the PDE} \}.$

Any solution $g \in G$ satisfies $g = \sum_{i=1}^{r} \lambda_i \frac{\partial f_i}{\partial x} \frac{f}{f_i}$ with $\lambda_i \in \mathbb{C}$, so

$$f = f_1 \cdots f_r = \prod_{\lambda \in \mathbb{C}} \gcd(f, g - \lambda \frac{\partial f}{\partial x})$$

(*f_i* the distinct irreducible factors of *f*) With high probability \exists distinct λ_i s.t. $f_i = \gcd(f, g - \lambda_i \frac{\partial f}{\partial x})$ Gao's PDE based Factorizer

Algorithm **Input:** $f \in \mathbb{K}[x, y], \mathbb{K} \subseteq \mathbb{C}$ **Output:** $f_1, \dots, f_r \in \mathbb{C}[x, y]$

- 1. Find a basis for the linear space G, and choose a random element $g \in G$.
- 2. Compute the polynomial $E_g = \prod_i (z \lambda_i)$ via an eigenvalue formulation If E_g not squarefree, choose a new g
- 3. Compute the factors $f_i = \gcd(f, g \lambda_i \frac{\partial f}{\partial x})$ in $\mathbb{K}(\lambda_i)$.

In exact arithmetic the extention field $\mathbb{K}(\lambda_i)$ is found via univariate factorization.

Adapting to the Approximate Case

The following must be solved to create an approximate factorizer from Gao's algorithm:

- 1. Computing approximate GCDs of bivariate polynomials;
- 2. Determining the numerical dimension of G, and computing an approximate solution g;
- 3. Computing a g s.t. the polynomial E_g has no clusters of roots.

Determining the Number of Approximate Factors Let $\operatorname{Rup}(f)$ be the matrix from Gao's algorithm Recall:

of factors of f = Nullity(Rup(f))

Determining the Number of Approximate Factors Let $\operatorname{Rup}(f)$ be the matrix from Gao's algorithm Recall:

of factors of f = Nullity(Rup(f))

Rup(*f*) has nullity *r* if $\sigma_m \ge \ldots \ge \sigma_{r+1} \ne 0$ and $\sigma_r = \ldots = \sigma_1 = 0$.

Say $\operatorname{Rup}(f)$ has nullity *r* with tolerance ε if:

 $\sigma_m \geq \ldots \geq \sigma_{r+1} > \varepsilon \geq \sigma_r \geq \ldots \geq \sigma_1$

Find a "best" ε from the largest gap choose $\varepsilon = \sigma_r$ s.t. σ_{r+1}/σ_r is maximal Determining the Number of Approximate Factors

If *f* is irreducible largest gap in the sing. values of $\operatorname{Rup}(f) \rightsquigarrow \#$ of approx. factors

Recall:

$G = \operatorname{Span}_{\mathbb{C}} \{ g \mid [g,h] \in \operatorname{Nullspace}(\operatorname{Rup}(f)) \}$

If *r* is position of the largest gap in the sing. values of $\operatorname{Rup}(f)$, approx. version of *G* is Span of last *r* sing. vectors of $\operatorname{Rup}(f)$

Approximate Factorization

Input: $f \in \mathbb{C}[x, y]$ abs. irreducible, approx. square-free **Output**: f_1, \ldots, f_r approx. factors of f, and c

- 1. Compute the SVD of $\operatorname{Rup}(f)$, determine *r*, its approximate nullity, and choose $g = \sum a_i g_i$, a random linear combination of the last *r* right singular vectors
- 2. compute E_g and its roots via an eigenvalue computation
- 3. For each λ_i compute the approximate GCD $f_i = \gcd(f, g - \lambda_i f)$ and find an optimal scaling: $\min_c ||f - c \prod_{i=1}^r f_i||$

Approx. GCD: Generalized Sylvester Matrix

A pair $g, h \in \mathbb{K}[x, y]$ has GCD of degree at least k iff \exists non-zero solutions $u, v \in \mathbb{K}[x, y]$ to:

$$\frac{g}{h} = \frac{v}{u}$$
, $\operatorname{tdeg}(u) \le \operatorname{tdeg}(h) - k$, $\operatorname{tdeg}(v) \le \operatorname{tdeg}(g) - k$

or

ug - vh = 0, $tdeg(u) \le tdeg(h) - k$, $tdeg(v) \le tdeg(g) - k$

Equation gives a linear system in the coefficients of u and v

Denote the matrix of the system $Syl_k(g,h)$

Computing the Approximate GCD

Input: *g* and *h* relatively prime **Output**: $d \notin \mathbb{K}$, approx. GCD of *g* and *h*

- 1. Find *p* from the largest gap in the singular values of $Syl_1(g,h)$
- 2. Find $k \in \mathbb{Z}$ which solves $\min_k \left| p \binom{k+2}{2} \right|$
- 3. Find [u, v], the right singular vector corresponding to smallest singular value of Syl_k(g, h) [compute with an iterative method]
- 4. Find a *d* to minimize $||h du||_2^2 + ||g dv||_2^2$, using least squares ("Approximate division")

Also possible to add iterative improvement á la Zeng&Dayton'04

Notes on the Repeated Factor Case

We say *f* is approximately square-free if:

dist. to nearest reducible poly. < dist. to nearest non-square-free poly.

Notes on the Repeated Factor Case

We say f is approximately square-free if:

dist. to nearest reducible poly. < dist. to nearest non-square-free poly.

We handle the repeated factor case differently than usual: without iterating approximate GCDs:

Compute the approximate quotient \overline{f} of f and $gcd(f, \frac{\partial f}{\partial x})$ and factor the approximately square-free kernel \overline{f}

Notes on the Repeated Factor Case

We say f is approximately square-free if:

dist. to nearest reducible poly. < dist. to nearest non-square-free poly.

We handle the repeated factor case differently than usual: without iterating approximate GCDs:

Compute the approximate quotient \overline{f} of f and $gcd(f, \frac{\partial f}{\partial x})$ and factor the approximately square-free kernel \overline{f}

Determine multiplicity of approximate factors f_i by comparing the degrees of the approximate GCDs:

 $gcd(f_i,\partial^k f/\partial x^k)$

Table of Benchmarks

Example	$tdeg(f_i)$	$\frac{\sigma_{r+1}}{\sigma_r}$	$\frac{\sigma_r}{\ R(f)\ _2}$	coeff. error	backward error	time(sec)
Nagasaka'02	2,3	11	10 ⁻³	10 ⁻²	1.08e–2	14.631
Kaltofen'00	2,2	10 ⁹	10^{-10}	10^{-4}	1.02e–9	13.009
Sasaki'01	5,5	10 ⁹	10^{-10}	10^{-13}	8.30e-10	5.258
Sasaki'01	10,10	10 ⁵	10^{-6}	10^{-7}	1.05e-6	85.96
Corless et al'01	7,8	10 ⁷	10^{-8}	10^{-9}	1.41e-8	19.628
Corless et al'02	3,3,3	10 ⁸	10^{-10}	0	1.29e–9	9.234
Zeng'04	$(5)^3, 3, (2)^4$	107	10^{-9}	10^{-10}	2.09e-7	73.52

Table of Benchmarks

Example	$tdeg(f_i)$	$\frac{\sigma_{r+1}}{\sigma_r}$	$\frac{\mathbf{\sigma}_r}{\ \mathbf{R}(f)\ _2}$	coeff. error	backward error	time(sec)
Random ($f_i \in \mathbb{Z}$)	9,7	486	10^{-4}	10^{-4}	2.14e-4	43.823
"	6, 6, 10	10 ³	10^{-6}	10^{-5}	2.47e-4	539.67
"	4,4,4,4,4	273	10^{-6}	10^{-5}	1.31e-3	3098.
"	3,3,3	1.70	10^{-3}	10 ⁻¹	7.93e-1	29.25
"	18,18	104	10^{-7}	10 ⁻⁶	3.75e-6	3173.
"	12,7,5	8.34	10^{-4}	10 ⁻³	8.42e-3	4370.
Not Sqr Free	$(5,(5)^2)$	10 ³	10^{-5}	10^{-5}	6.98e–5	34.28
3 variables	5,5	10 ⁴	10^{-5}	10^{-5}	1.72e–5	332.99
$f_i \in \mathbb{C}$	6,6	106	10^{-8}	10^{-7}	2.97e-7	30.034

Table of Benchmarks

Example	$tdeg(f_i)$	$\frac{\sigma_{r+1}}{\sigma_r}$	$\frac{\mathbf{\sigma}_r}{\ \mathbf{R}(f)\ _2}$	coeff. error	backward error	time(sec)
Random ($f_i \in \mathbb{Z}$)	9,7	486	10 ⁻⁴	10 ⁻⁴	2.14e-4	43.823
11	6, 6, 10	10 ³	10^{-6}	10^{-5}	2.47e-4	539.67
**	4,4,4,4,4	273	10^{-6}	10 ⁻⁵	1.31e-3	3098.
"	3,3,3	1.70	10^{-3}	10 ⁻¹	7.93e-1	29.25
"	18,18	104	10^{-7}	10 ⁻⁶	3.75e-6	3173.
"	12,7,5	8.34	10 ⁻⁴	10⁻³	8.42e–3	4370.
Not Sqr Free	$(5,(5)^2)$	10 ³	10^{-5}	10 ⁻⁵	6.98e–5	34.28
3 variables	5,5	104	10^{-5}	10^{-5}	1.72e–5	332.99
$f_i \in \mathbb{C}$	6,6	106	10^{-8}	10^{-7}	2.97e-7	30.034

More than two variables: direct approach

• PDEs can be generalized to many variables

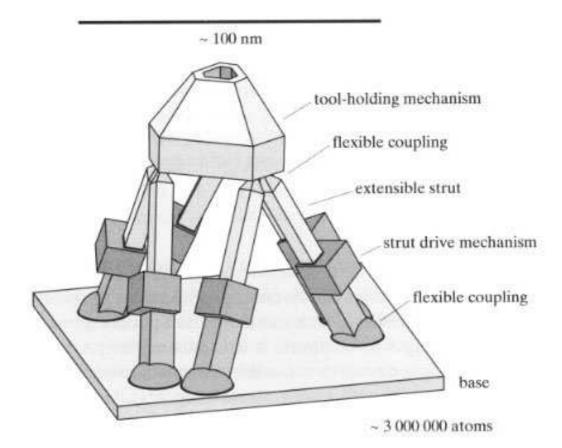
$$\begin{split} \frac{\partial}{\partial y_i} \frac{g}{f} &- \frac{\partial}{\partial x} \frac{h_i}{f} = 0, \forall 1 \le i \le k \\ & \deg g \le \deg f, \quad \deg h_i \le \deg f, \forall 1 \le i \le k, \\ & \deg_x g \le (\deg_x f) - 1, \quad \deg_{y_i} h_i \le (\deg_{y_i} f) - 1, \forall 1 \le i \le k. \end{split}$$

More than two variables: interpolation

• Our multivariate implementation together with Wen-shin Lee's numerical *sparse* interpolation code quickly factors polynomials arising in engineering *Stewart-Gough platforms*

Polynomials were 3 variables, factor multiplicities up to 5, coefficient error 10^{-16} , and were provided to us by Jan Verschelde

Stewart Platform Example



Drexler's 1992 nano Stewart platform

• Use *Gauss-Newton optimization* at the end to improve nearness of computed approximate answers

- Use *Gauss-Newton optimization* at the end to improve nearness of computed approximate answers
- Replace SVD techniques with Structured SVD/Total Least Squares [Park et al., Chu et al.]

- Use *Gauss-Newton optimization* at the end to improve nearness of computed approximate answers
- Replace SVD techniques with Structured SVD/Total Least Squares [Park et al., Chu et al.]
- More generally, use *blackbox matrix* SVD algorithms $\operatorname{Rup}(f) \cdot \mathbf{v}$ costs 4 polynomial multiplications

Should make very large problems possible

- Use *Gauss-Newton optimization* at the end to improve nearness of computed approximate answers
- Replace SVD techniques with Structured SVD/Total Least Squares [Park et al., Chu et al.]
- More generally, use *blackbox matrix* SVD algorithms $\operatorname{Rup}(f) \cdot \mathbf{v}$ costs 4 polynomial multiplications

Should make very large problems possible

• Also need sparse interpolation for "very noisy" inputs to handle sparse multivariate problems

Code + Benchmarks at:

http://www.mmrc.iss.ac.cn/~lzhi/Research/appfac.html

or

http://www.kaltofen.us
 (click on "Software")