
Approximate Factorization of Complex
Multivariate Polynomials

Erich Kaltofen

North Carolina State University

http://www.kaltofen.us

Joint work with Shuhong Gao, John May, Zhengfeng Yang, and
Lihong Zhi

May and Yang received the ACM SIGSAM’s ISSAC 2004 Distinguished

Student Author Award for this work

– p.1

http://www.kaltofen.us

Factorization of noisy polynomials over the

complex numbers [my ’98 “Challenges”]

81x4 +16y4 −648z4 +72x2y2 −648x2 −288y2 +1296 = 0

(9x2 +4y2 +18
√

2z2 −36)(9x2 +4y2 −18
√

2z2 −36) = 0

81x4 +16y4 −648.003z4 +72x2y2 + .002x2z2 + .001y2z2

−648x2 −288y2 − .007z2 +1296 = 0
– p.2

Conclusion on my exact algorithm [JSC 1(1)’85]

“D. Izraelevitz at Massachusetts Institute of Technology has
already implemented a version of algorithm 1 using complex
floating point arithmetic. Early experiments indicate that the
linear systems computed in step (L) tend to be numerically
ill-conditioned. How to overcome this numerical problem is an
important question which we will investigate.”

– p.3

The Approximate Factorization Problem [LATIN ’94]

Given f ∈ C[x,y] irreducible, find f̃ ∈ C[x,y] s.t. deg f̃ ≤ deg f ,
f̃ factors, and ‖ f − f̃‖ is minimal.

Problem depends on choice of norm ‖ · ‖, and
notion of degree.

We use 2-norm, and multi-degree: mdeg f = (degx f ,degy f)

Degree bound is important:
(1+δx) f is reducible but for δ < ε/‖ f‖,

‖(1+δx) f − f‖ = ‖δx f‖ = δ‖ f‖ < ε

– p.4

The Approximate Factorization Problem [LATIN ’94]

Given f ∈ C[x,y] irreducible, find f̃ ∈ C[x,y] s.t. deg f̃ ≤ deg f ,
f̃ factors, and ‖ f − f̃‖ is minimal.

Problem depends on choice of norm ‖ · ‖, and
notion of degree.

We use 2-norm, and multi-degree: mdeg f = (degx f ,degy f)

Degree bound is important:
(1+δx) f is reducible but for δ < ε/‖ f‖,

‖(1+δx) f − f‖ = ‖δx f‖ = δ‖ f‖ < ε

– p.4

The Approximate Factorization Problem [LATIN ’94]

Given f ∈ C[x,y] irreducible, find f̃ ∈ C[x,y] s.t. deg f̃ ≤ deg f ,
f̃ factors, and ‖ f − f̃‖ is minimal.

Problem depends on choice of norm ‖ · ‖, and
notion of degree.

We use 2-norm, and multi-degree: mdeg f = (degx f ,degy f)

Degree bound is important:
(1+δx) f is reducible but for δ < ε/‖ f‖,

‖(1+δx) f − f‖ = ‖δx f‖ = δ‖ f‖ < ε

– p.4

State of the Approximate Factorization

• No polynomial time algorithm (except for constant degree
factors [Hitz, Kaltofen, Lakshman ’99])

• Several algorithms and heuristics to find a nearby
factorizable f̂ if f is “nearly factorizable”
[Corless et al. ’01 & ’02, Galligo and Rupprecht ’01,
Galligo and Watt ’97, Huang et al. ’00, Sasaki ’01,...]

• There are lower bounds for min‖ f − f̃‖ (“irreducibility
radius”) [Kaltofen and May ISSAC 2003]

– p.5

State of the Approximate Factorization

• No polynomial time algorithm (except for constant degree
factors [Hitz, Kaltofen, Lakshman ’99])

• Several algorithms and heuristics to find a nearby
factorizable f̂ if f is “nearly factorizable”
[Corless et al. ’01 & ’02, Galligo and Rupprecht ’01,
Galligo and Watt ’97, Huang et al. ’00, Sasaki ’01,...]

• There are lower bounds for min‖ f − f̃‖ (“irreducibility
radius”) [Kaltofen and May ISSAC 2003]

– p.5

State of the Approximate Factorization

• No polynomial time algorithm (except for constant degree
factors [Hitz, Kaltofen, Lakshman ’99])

• Several algorithms and heuristics to find a nearby
factorizable f̂ if f is “nearly factorizable”
[Corless et al. ’01 & ’02, Galligo and Rupprecht ’01,
Galligo and Watt ’97, Huang et al. ’00, Sasaki ’01,...]

• There are lower bounds for min‖ f − f̃‖ (“irreducibility
radius”) [Kaltofen and May ISSAC 2003]

– p.5

Our ISSAC’04 Results
• A new practical algorithm to compute approximate

multivariate GCDs

• A practical algorithm to find the factorization of a nearby
factorizable polynomial given any f

especially “noisy” f :
Given f = f1 f2 + fnoise,
we find f̄1, f̄2 s.t. ‖ f1 f2 − f̄1 f̄2‖ ≈ ‖ fnoise‖

even for large noise: ‖ fnoise‖/‖ f‖ ≥ 10−3

– p.6

Our ISSAC’04 Results
• A new practical algorithm to compute approximate

multivariate GCDs

• A practical algorithm to find the factorization of a nearby
factorizable polynomial given any f

especially “noisy” f :
Given f = f1 f2 + fnoise,
we find f̄1, f̄2 s.t. ‖ f1 f2 − f̄1 f̄2‖ ≈ ‖ fnoise‖

even for large noise: ‖ fnoise‖/‖ f‖ ≥ 10−3

– p.6

Maple Demonstration

– p.7

Ruppert’s Theorem

f ∈ K[x,y], mdeg f = (m,n)

K is a field, algebraically closed, and characteristic 0

Theorem. f is reducible ⇐⇒ ∃g,h ∈ K[x,y], non-zero,

∂
∂y

g
f
− ∂

∂x
h
f

= 0

mdeg g ≤ (m−2,n) , mdeg h ≤ (m,n−1)

PDE linear system in the coefficients of g and h

– p.8

Ruppert’s Theorem

f ∈ K[x,y], mdeg f = (m,n)

K is a field, algebraically closed, and characteristic 0

Theorem. f is reducible ⇐⇒ ∃g,h ∈ K[x,y], non-zero,

∂
∂y

g
f
− ∂

∂x
h
f

= 0

mdeg g ≤ (m−2,n) , mdeg h ≤ (m,n−1)

PDE linear system in the coefficients of g and h

– p.8

Gao’s PDE based Factorizer
Change degree bound: mdeg g ≤ (m−1,n),mdeg h ≤ (m,n−1)

so that: # linearly indep. solutions to the PDE = # factors of f

Require square-freeness: GCD(f , ∂ f
∂x) = 1

Let
G = SpanC{g | [g,h] is a solution to the PDE}.

Any solution g ∈ G satisfies g = ∑r
i=1 λi

∂ fi
∂x

f
fi

with λi ∈ C, so

f = f1 · · · fr = ∏
λ∈C

gcd(f ,g−λ
∂ f
∂x

)

(fi the distinct irreducible factors of f)

With high probability ∃ distinct λi s.t. fi = gcd(f ,g−λi
∂ f
∂x)

– p.9

Gao’s PDE based Factorizer
Change degree bound: mdeg g ≤ (m−1,n),mdeg h ≤ (m,n−1)

so that: # linearly indep. solutions to the PDE = # factors of f

Require square-freeness: GCD(f , ∂ f
∂x) = 1

Let
G = SpanC{g | [g,h] is a solution to the PDE}.

Any solution g ∈ G satisfies g = ∑r
i=1 λi

∂ fi
∂x

f
fi

with λi ∈ C, so

f = f1 · · · fr = ∏
λ∈C

gcd(f ,g−λ
∂ f
∂x

)

(fi the distinct irreducible factors of f)

With high probability ∃ distinct λi s.t. fi = gcd(f ,g−λi
∂ f
∂x)

– p.9

Gao’s PDE based Factorizer

Algorithm
Input: f ∈ K[x,y], K ⊆ C

Output: f1, . . . , fr ∈ C[x,y]

1. Find a basis for the linear space G, and choose a random
element g ∈ G.

2. Compute the polynomial Eg = ∏i(z−λi) via an eigenvalue
formulation
If Eg not squarefree, choose a new g

3. Compute the factors fi = gcd(f ,g−λi
∂ f
∂x) in K(λi).

In exact arithmetic the extention field K(λi) is found via
univariate factorization.

– p.10

Adapting to the Approximate Case

The following must be solved to create an approximate factorizer
from Gao’s algorithm:

1. Computing approximate GCDs of bivariate polynomials;

2. Determining the numerical dimension of G, and computing
an approximate solution g;

3. Computing a g s.t. the polynomial Eg has no clusters of
roots.

– p.11

Determining the Number of Approximate Factors

Let Rup(f) be the matrix from Gao’s algorithm
Recall:

of factors of f = Nullity(Rup(f))

If f is irreducible
largest gap in the sing. values of Rup(f) # of approx. factors

– p.12

Determining the Number of Approximate Factors

Let Rup(f) be the matrix from Gao’s algorithm
Recall:

of factors of f = Nullity(Rup(f))

Rup(f) has nullity r if
σm ≥ . . . ≥ σr+1 6= 0 and σr = . . . = σ1 = 0.

Say Rup(f) has nullity r with tolerance ε if:

σm ≥ . . . ≥ σr+1 > ε ≥ σr ≥ . . . ≥ σ1

Find a “best” ε from the largest gap
choose ε = σr s.t. σr+1/σr is maximal

If f is irreducible
largest gap in the sing. values of Rup(f) # of approx. factors

– p.12

Determining the Number of Approximate Factors

If f is irreducible
largest gap in the sing. values of Rup(f) # of approx. factors

Recall:

G = SpanC{g | [g,h] ∈ Nullspace(Rup(f))}

If r is position of the largest gap in the sing. values of Rup(f),
approx. version of G is Span of last r sing. vectors of Rup(f)

– p.12

Approximate Factorization

Input: f ∈ C[x,y] abs. irreducible, approx. square-free
Output: f1, . . . , fr approx. factors of f , and c

1. Compute the SVD of Rup(f), determine r, its approximate
nullity, and choose g = ∑aigi, a random linear combination
of the last r right singular vectors

2. compute Eg and its roots via an eigenvalue computation

3. For each λi compute the approximate GCD
fi = gcd(f ,g−λi f) and find an optimal scaling:
minc ‖ f − c ∏r

i=1 fi‖

– p.13

Approx. GCD: Generalized Sylvester Matrix

A pair g,h ∈ K[x,y] has GCD of degree at least k iff
∃ non-zero solutions u,v ∈ K[x,y] to:

g
h

=
v
u
, tdeg(u) ≤ tdeg(h)− k, tdeg(v) ≤ tdeg(g)− k

or

ug− vh = 0, tdeg(u) ≤ tdeg(h)− k, tdeg(v) ≤ tdeg(g)− k

Equation gives a linear system in the coefficients of u and v

Denote the matrix of the system Sylk(g,h)

– p.14

Computing the Approximate GCD
Input: g and h relatively prime
Output: d 6∈ K, approx. GCD of g and h

1. Find p from the largest gap in the singular values of
Syl1(g,h)

2. Find k ∈ Z which solves mink

∣

∣

∣
p−

(k+2
2

)

∣

∣

∣

3. Find [u,v], the right singular vector corresponding to
smallest singular value of Sylk(g,h)
[compute with an iterative method]

4. Find a d to minimize ‖h−d u‖2
2 +‖g−d v‖2

2, using least
squares (“Approximate division”)

Also possible to add iterative improvement á la Zeng&Dayton’04

– p.15

Notes on the Repeated Factor Case

We say f is approximately square-free if:

dist. to nearest reducible poly. < dist. to nearest non-square-free poly.

We handle the repeated factor case differently than usual:
without iterating approximate GCDs:

Compute the approximate quotient f̄ of f and gcd(f , ∂ f
∂x) and

factor the approximately square-free kernel f̄

Determine multiplicity of approximate factors fi by comparing
the degrees of the approximate GCDs:

gcd(fi,∂k f /∂xk)

– p.16

Notes on the Repeated Factor Case

We say f is approximately square-free if:

dist. to nearest reducible poly. < dist. to nearest non-square-free poly.

We handle the repeated factor case differently than usual:
without iterating approximate GCDs:

Compute the approximate quotient f̄ of f and gcd(f , ∂ f
∂x) and

factor the approximately square-free kernel f̄

Determine multiplicity of approximate factors fi by comparing
the degrees of the approximate GCDs:

gcd(fi,∂k f /∂xk)

– p.16

Notes on the Repeated Factor Case

We say f is approximately square-free if:

dist. to nearest reducible poly. < dist. to nearest non-square-free poly.

We handle the repeated factor case differently than usual:
without iterating approximate GCDs:

Compute the approximate quotient f̄ of f and gcd(f , ∂ f
∂x) and

factor the approximately square-free kernel f̄

Determine multiplicity of approximate factors fi by comparing
the degrees of the approximate GCDs:

gcd(fi,∂k f /∂xk)

– p.16

Table of Benchmarks

Example tdeg(fi)
σr+1
σr

σr
‖R(f)‖2

coeff.

error

backward

error
time(sec)

Nagasaka’02 2,3 11 10−3 10−2 1.08e–2 14.631

Kaltofen’00 2,2 109 10−10 10−4 1.02e–9 13.009

Sasaki’01 5,5 109 10−10 10−13 8.30e–10 5.258

Sasaki’01 10,10 105 10−6 10−7 1.05e–6 85.96

Corless et al’01 7,8 107 10−8 10−9 1.41e–8 19.628

Corless et al’02 3,3,3 108 10−10 0 1.29e–9 9.234

Zeng’04 (5)3,3,(2)4 107 10−9 10−10 2.09e–7 73.52

Example tdeg(fi)
σr+1
σr

σr
‖R(f)‖2

coeff.

error

backward

error
time(sec)

Random (fi ∈ Z) 9,7 486 10−4 10−4 2.14e–4 43.823

" 6,6,10 103 10−6 10−5 2.47e–4 539.67

" 4,4,4,4,4 273 10−6 10−5 1.31e–3 3098.

" 3,3,3 1.70 10−3 10−1 7.93e–1 29.25

" 18,18 104 10−7 10−6 3.75e–6 3173.

" 12,7,5 8.34 10−4 10−3 8.42e–3 4370.

Not Sqr Free 5,(5)2 103 10−5 10−5 6.98e–5 34.28

3 variables 5,5 104 10−5 10−5 1.72e–5 332.99

fi ∈ C 6,6 106 10−8 10−7 2.97e–7 30.034

– p.17

Table of Benchmarks

Example tdeg(fi)
σr+1
σr

σr
‖R(f)‖2

coeff.

error

backward

error
time(sec)

Random (fi ∈ Z) 9,7 486 10−4 10−4 2.14e–4 43.823

" 6,6,10 103 10−6 10−5 2.47e–4 539.67

" 4,4,4,4,4 273 10−6 10−5 1.31e–3 3098.

" 3,3,3 1.70 10−3 10−1 7.93e–1 29.25

" 18,18 104 10−7 10−6 3.75e–6 3173.

" 12,7,5 8.34 10−4 10−3 8.42e–3 4370.

Not Sqr Free 5,(5)2 103 10−5 10−5 6.98e–5 34.28

3 variables 5,5 104 10−5 10−5 1.72e–5 332.99

fi ∈ C 6,6 106 10−8 10−7 2.97e–7 30.034

Example tdeg(fi)
σr+1
σr

σr
‖R(f)‖2

coeff.

error

backward

error
time(sec)

Random (fi ∈ Z) 9,7 486 10−4 10−4 2.14e–4 43.823

" 6,6,10 103 10−6 10−5 2.47e–4 539.67

" 4,4,4,4,4 273 10−6 10−5 1.31e–3 3098.

" 3,3,3 1.70 10−3 10−1 7.93e–1 29.25

" 18,18 104 10−7 10−6 3.75e–6 3173.

" 12,7,5 8.34 10−4 10−3 8.42e–3 4370.

Not Sqr Free 5,(5)2 103 10−5 10−5 6.98e–5 34.28

3 variables 5,5 104 10−5 10−5 1.72e–5 332.99

fi ∈ C 6,6 106 10−8 10−7 2.97e–7 30.034

– p.17

Table of Benchmarks

Example tdeg(fi)
σr+1
σr

σr
‖R(f)‖2

coeff.

error

backward

error
time(sec)

Random (fi ∈ Z) 9,7 486 10−4 10−4 2.14e–4 43.823

" 6,6,10 103 10−6 10−5 2.47e–4 539.67

" 4,4,4,4,4 273 10−6 10−5 1.31e–3 3098.

" 3,3,3 1.70 10−3 10−1 7.93e–1 29.25

" 18,18 104 10−7 10−6 3.75e–6 3173.

" 12,7,5 8.34 10−4 10−3 8.42e–3 4370.

Not Sqr Free 5,(5)2 103 10−5 10−5 6.98e–5 34.28

3 variables 5,5 104 10−5 10−5 1.72e–5 332.99

fi ∈ C 6,6 106 10−8 10−7 2.97e–7 30.034

– p.17

More than two variables: direct approach

• PDEs can be generalized to many variables

∂
∂yi

g
f
− ∂

∂x
hi

f
= 0, ∀1 ≤ i ≤ k

degg ≤ deg f , deghi ≤ deg f , ∀1 ≤ i ≤ k,

degx g ≤ (degx f)−1, degyi
hi ≤ (degyi

f)−1, ∀1 ≤ i ≤ k.

– p.18

More than two variables: interpolation

• Our multivariate implementation together with Wen-shin
Lee’s numerical sparse interpolation code quickly factors
polynomials arising in engineering Stewart-Gough
platforms

Polynomials were 3 variables, factor multiplicities up to 5,
coefficient error 10−16, and were provided to us by
Jan Verschelde

– p.19

Stewart Platform Example

Drexler’s 1992 nano Stewart platform

– p.20

Current Investigations
• Use Gauss-Newton optimization at the end to improve

nearness of computed approximate answers

• Replace SVD techniques with Structured SVD/Total Least
Squares [Park et al., Chu et al.]

• More generally, use blackbox matrix SVD algorithms

Rup(f) ·v costs 4 polynomial multiplications

Should make very large problems possible

• Also need sparse interpolation for “very noisy” inputs to
handle sparse multivariate problems

– p.21

Current Investigations
• Use Gauss-Newton optimization at the end to improve

nearness of computed approximate answers

• Replace SVD techniques with Structured SVD/Total Least
Squares [Park et al., Chu et al.]

• More generally, use blackbox matrix SVD algorithms

Rup(f) ·v costs 4 polynomial multiplications

Should make very large problems possible

• Also need sparse interpolation for “very noisy” inputs to
handle sparse multivariate problems

– p.21

Current Investigations
• Use Gauss-Newton optimization at the end to improve

nearness of computed approximate answers

• Replace SVD techniques with Structured SVD/Total Least
Squares [Park et al., Chu et al.]

• More generally, use blackbox matrix SVD algorithms

Rup(f) ·v costs 4 polynomial multiplications

Should make very large problems possible

• Also need sparse interpolation for “very noisy” inputs to
handle sparse multivariate problems

– p.21

Current Investigations
• Use Gauss-Newton optimization at the end to improve

nearness of computed approximate answers

• Replace SVD techniques with Structured SVD/Total Least
Squares [Park et al., Chu et al.]

• More generally, use blackbox matrix SVD algorithms

Rup(f) ·v costs 4 polynomial multiplications

Should make very large problems possible

• Also need sparse interpolation for “very noisy” inputs to
handle sparse multivariate problems

– p.21

Code + Benchmarks at:
http://www.mmrc.iss.ac.cn/˜lzhi/Research/appfac.html

or
http://www.kaltofen.us

(click on “Software”)

– p.22

http://www.mmrc.iss.ac.cn/~lzhi/Research/appfac.html
http://www.kaltofen.us

	Factorization of noisy polynomials over the\ complex numbers [my '98 ``Challenges'']
	Conclusion on my exact algorithm [JSC 1(1)'85]
	hbox {The Approximate Factorization Problem [LATIN '94]}
	State of the Approximate Factorization
	Our ISSAC'04 Results
	Maple Demonstration
	Ruppert's Theorem
	Gao's PDE based Factorizer
	Gao's PDE based Factorizer
	Adapting to the Approximate Case
	Determining the Number of Approximate Factors
	Approximate Factorization
	Approx. GCD: Generalized Sylvester Matrix
	Computing the Approximate GCD
	Notes on the Repeated Factor Case
	Table of Benchmarks
	More than two variables: direct approach
	More than two variables: interpolation
	Stewart Platform Example
	Current Investigations
	Code + Benchmarks at: \ {�ootnotesize url {http://www.mmrc.iss.ac.cn/~lzhi/Research/appfac.html}} \ {�lack or} \ {�ootnotesize url {http://www.kaltofen.us}}\ {�lack (click on ``Software'')}

