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Factorization of noisy polynomials over the

complex numbers [my ’98 “Challenges”]

81x4 +16y4 −648z4 +72x2y2 −648x2 −288y2 +1296 = 0

(9x2 +4y2 +18
√

2z2 −36)(9x2 +4y2 −18
√

2z2 −36) = 0

81x4 +16y4 −648.003z4 +72x2y2 + .002x2z2 + .001y2z2

−648x2 −288y2 − .007z2 +1296 = 0
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Conclusion on my exact algorithm [JSC 1(1)’85]

“D. Izraelevitz at Massachusetts Institute of Technology has
already implemented a version of algorithm 1 using complex
floating point arithmetic. Early experiments indicate that the
linear systems computed in step (L) tend to be numerically
ill-conditioned. How to overcome this numerical problem is an
important question which we will investigate.”
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The Approximate Factorization Problem [LATIN ’94]

Given f ∈ C[x,y] irreducible, find f̃ ∈ C[x,y] s.t. deg f̃ ≤ deg f ,
f̃ factors, and ‖ f − f̃‖ is minimal.

Problem depends on choice of norm ‖ · ‖, and
notion of degree.

We use 2-norm, and multi-degree: mdeg f = (degx f ,degy f )

Degree bound is important:
(1+δx) f is reducible but for δ < ε/‖ f‖,

‖(1+δx) f − f‖ = ‖δx f‖ = δ‖ f‖ < ε

– p.4



The Approximate Factorization Problem [LATIN ’94]

Given f ∈ C[x,y] irreducible, find f̃ ∈ C[x,y] s.t. deg f̃ ≤ deg f ,
f̃ factors, and ‖ f − f̃‖ is minimal.

Problem depends on choice of norm ‖ · ‖, and
notion of degree.

We use 2-norm, and multi-degree: mdeg f = (degx f ,degy f )

Degree bound is important:
(1+δx) f is reducible but for δ < ε/‖ f‖,

‖(1+δx) f − f‖ = ‖δx f‖ = δ‖ f‖ < ε

– p.4



The Approximate Factorization Problem [LATIN ’94]

Given f ∈ C[x,y] irreducible, find f̃ ∈ C[x,y] s.t. deg f̃ ≤ deg f ,
f̃ factors, and ‖ f − f̃‖ is minimal.

Problem depends on choice of norm ‖ · ‖, and
notion of degree.

We use 2-norm, and multi-degree: mdeg f = (degx f ,degy f )

Degree bound is important:
(1+δx) f is reducible but for δ < ε/‖ f‖,

‖(1+δx) f − f‖ = ‖δx f‖ = δ‖ f‖ < ε

– p.4



State of the Approximate Factorization

• No polynomial time algorithm (except for constant degree
factors [Hitz, Kaltofen, Lakshman ’99])

• Several algorithms and heuristics to find a nearby
factorizable f̂ if f is “nearly factorizable”
[Corless et al. ’01 & ’02, Galligo and Rupprecht ’01,
Galligo and Watt ’97, Huang et al. ’00, Sasaki ’01,...]

• There are lower bounds for min‖ f − f̃‖ (“irreducibility
radius”) [Kaltofen and May ISSAC 2003]
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Our ISSAC’04 Results
• A new practical algorithm to compute approximate

multivariate GCDs

• A practical algorithm to find the factorization of a nearby
factorizable polynomial given any f

especially “noisy” f :
Given f = f1 f2 + fnoise,
we find f̄1, f̄2 s.t. ‖ f1 f2 − f̄1 f̄2‖ ≈ ‖ fnoise‖

even for large noise: ‖ fnoise‖/‖ f‖ ≥ 10−3
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Maple Demonstration
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Ruppert’s Theorem

f ∈ K[x,y], mdeg f = (m,n)

K is a field, algebraically closed, and characteristic 0

Theorem. f is reducible ⇐⇒ ∃g,h ∈ K[x,y], non-zero,

∂
∂y

g
f
− ∂

∂x
h
f

= 0

mdeg g ≤ (m−2,n) , mdeg h ≤ (m,n−1)

PDE linear system in the coefficients of g and h
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Gao’s PDE based Factorizer
Change degree bound: mdeg g ≤ (m−1,n),mdeg h ≤ (m,n−1)

so that: # linearly indep. solutions to the PDE = # factors of f

Require square-freeness: GCD( f , ∂ f
∂x ) = 1

Let
G = SpanC{g | [g,h] is a solution to the PDE}.

Any solution g ∈ G satisfies g = ∑r
i=1 λi

∂ fi
∂x

f
fi

with λi ∈ C, so

f = f1 · · · fr = ∏
λ∈C

gcd( f ,g−λ
∂ f
∂x

)

( fi the distinct irreducible factors of f )

With high probability ∃ distinct λi s.t. fi = gcd( f ,g−λi
∂ f
∂x )
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Gao’s PDE based Factorizer

Algorithm
Input: f ∈ K[x,y], K ⊆ C

Output: f1, . . . , fr ∈ C[x,y]

1. Find a basis for the linear space G, and choose a random
element g ∈ G.

2. Compute the polynomial Eg = ∏i(z−λi) via an eigenvalue
formulation
If Eg not squarefree, choose a new g

3. Compute the factors fi = gcd( f ,g−λi
∂ f
∂x ) in K(λi).

In exact arithmetic the extention field K(λi) is found via
univariate factorization.

– p.10



Adapting to the Approximate Case

The following must be solved to create an approximate factorizer
from Gao’s algorithm:

1. Computing approximate GCDs of bivariate polynomials;

2. Determining the numerical dimension of G, and computing
an approximate solution g;

3. Computing a g s.t. the polynomial Eg has no clusters of
roots.
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Determining the Number of Approximate Factors

Let Rup( f ) be the matrix from Gao’s algorithm
Recall:

# of factors of f = Nullity(Rup( f ))

If f is irreducible
largest gap in the sing. values of Rup( f ) # of approx. factors
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Determining the Number of Approximate Factors

Let Rup( f ) be the matrix from Gao’s algorithm
Recall:

# of factors of f = Nullity(Rup( f ))

Rup( f ) has nullity r if
σm ≥ . . . ≥ σr+1 6= 0 and σr = . . . = σ1 = 0.

Say Rup( f ) has nullity r with tolerance ε if:

σm ≥ . . . ≥ σr+1 > ε ≥ σr ≥ . . . ≥ σ1

Find a “best” ε from the largest gap
choose ε = σr s.t. σr+1/σr is maximal

If f is irreducible
largest gap in the sing. values of Rup( f ) # of approx. factors
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Determining the Number of Approximate Factors

If f is irreducible
largest gap in the sing. values of Rup( f ) # of approx. factors

Recall:

G = SpanC{g | [g,h] ∈ Nullspace(Rup( f ))}

If r is position of the largest gap in the sing. values of Rup( f ),
approx. version of G is Span of last r sing. vectors of Rup( f )
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Approximate Factorization

Input: f ∈ C[x,y] abs. irreducible, approx. square-free
Output: f1, . . . , fr approx. factors of f , and c

1. Compute the SVD of Rup( f ), determine r, its approximate
nullity, and choose g = ∑aigi, a random linear combination
of the last r right singular vectors

2. compute Eg and its roots via an eigenvalue computation

3. For each λi compute the approximate GCD
fi = gcd( f ,g−λi f ) and find an optimal scaling:
minc ‖ f − c ∏r

i=1 fi‖

– p.13



Approx. GCD: Generalized Sylvester Matrix

A pair g,h ∈ K[x,y] has GCD of degree at least k iff
∃ non-zero solutions u,v ∈ K[x,y] to:

g
h

=
v
u
, tdeg(u) ≤ tdeg(h)− k, tdeg(v) ≤ tdeg(g)− k

or

ug− vh = 0, tdeg(u) ≤ tdeg(h)− k, tdeg(v) ≤ tdeg(g)− k

Equation gives a linear system in the coefficients of u and v

Denote the matrix of the system Sylk(g,h)

– p.14



Computing the Approximate GCD
Input: g and h relatively prime
Output: d 6∈ K, approx. GCD of g and h

1. Find p from the largest gap in the singular values of
Syl1(g,h)

2. Find k ∈ Z which solves mink

∣

∣

∣
p−

(k+2
2

)

∣

∣

∣

3. Find [u,v], the right singular vector corresponding to
smallest singular value of Sylk(g,h)
[compute with an iterative method]

4. Find a d to minimize ‖h−d u‖2
2 +‖g−d v‖2

2, using least
squares (“Approximate division”)

Also possible to add iterative improvement á la Zeng&Dayton’04

– p.15



Notes on the Repeated Factor Case

We say f is approximately square-free if:

dist. to nearest reducible poly. < dist. to nearest non-square-free poly.

We handle the repeated factor case differently than usual:
without iterating approximate GCDs:

Compute the approximate quotient f̄ of f and gcd( f , ∂ f
∂x ) and

factor the approximately square-free kernel f̄

Determine multiplicity of approximate factors fi by comparing
the degrees of the approximate GCDs:

gcd( fi,∂k f /∂xk)
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Table of Benchmarks

Example tdeg( fi)
σr+1
σr

σr
‖R( f )‖2

coeff.

error

backward

error
time(sec)

Nagasaka’02 2,3 11 10−3 10−2 1.08e–2 14.631

Kaltofen’00 2,2 109 10−10 10−4 1.02e–9 13.009

Sasaki’01 5,5 109 10−10 10−13 8.30e–10 5.258

Sasaki’01 10,10 105 10−6 10−7 1.05e–6 85.96

Corless et al’01 7,8 107 10−8 10−9 1.41e–8 19.628

Corless et al’02 3,3,3 108 10−10 0 1.29e–9 9.234

Zeng’04 (5)3,3,(2)4 107 10−9 10−10 2.09e–7 73.52

Example tdeg( fi)
σr+1
σr

σr
‖R( f )‖2

coeff.

error

backward

error
time(sec)

Random ( fi ∈ Z) 9,7 486 10−4 10−4 2.14e–4 43.823

" 6,6,10 103 10−6 10−5 2.47e–4 539.67

" 4,4,4,4,4 273 10−6 10−5 1.31e–3 3098.

" 3,3,3 1.70 10−3 10−1 7.93e–1 29.25

" 18,18 104 10−7 10−6 3.75e–6 3173.

" 12,7,5 8.34 10−4 10−3 8.42e–3 4370.

Not Sqr Free 5,(5)2 103 10−5 10−5 6.98e–5 34.28

3 variables 5,5 104 10−5 10−5 1.72e–5 332.99

fi ∈ C 6,6 106 10−8 10−7 2.97e–7 30.034
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More than two variables: direct approach

• PDEs can be generalized to many variables

∂
∂yi

g
f
− ∂

∂x
hi

f
= 0, ∀1 ≤ i ≤ k

degg ≤ deg f , deghi ≤ deg f , ∀1 ≤ i ≤ k,

degx g ≤ (degx f )−1, degyi
hi ≤ (degyi

f )−1, ∀1 ≤ i ≤ k.
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More than two variables: interpolation

• Our multivariate implementation together with Wen-shin
Lee’s numerical sparse interpolation code quickly factors
polynomials arising in engineering Stewart-Gough
platforms

Polynomials were 3 variables, factor multiplicities up to 5,
coefficient error 10−16, and were provided to us by
Jan Verschelde

– p.19



Stewart Platform Example

Drexler’s 1992 nano Stewart platform
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Current Investigations
• Use Gauss-Newton optimization at the end to improve

nearness of computed approximate answers

• Replace SVD techniques with Structured SVD/Total Least
Squares [Park et al., Chu et al.]

• More generally, use blackbox matrix SVD algorithms

Rup( f ) ·v costs 4 polynomial multiplications

Should make very large problems possible

• Also need sparse interpolation for “very noisy” inputs to
handle sparse multivariate problems

– p.21
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Code + Benchmarks at:
http://www.mmrc.iss.ac.cn/˜lzhi/Research/appfac.html

or
http://www.kaltofen.us

(click on “Software”)
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