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THE NOBEL PRIZE IN PHYSICS 1999 

 

PRESS RELEASE 12 OCTOBER 1999
The Prize I Further reading I The laureates 

The Royal Swedish Academy of Sciences has awarded
the 1999 Nobel Prize in Physics 
jointly to 

Professor Gerardus ’t Hooft, University of Utrecht, Utrecht, the Netherlands,
and 
Professor Emeritus Martinus J.G. Veltman, University of Michigan, USA,
resident in Bilthoven, the Netherlands. 

The two researchers are being awarded the Nobel Prize for having placed particle
physics theory on a firmer mathematical foundation. ... 

The Academy’s citation:
"for elucidating the quantum structure of electroweak interactions in physics."

... 
One person who had not given up hope of being able to renormalize non-abelian
gauge theories was Martinus J.G.Veltman. At the end of the 1960s he was a
newly appointed professor at the University of Utrecht. Veltman had developed
the Schoonschip computer program which, using symbols, performed algebraic
simplifications of the complicated expressions that all quantum field theories
result in when quantitative calculations are performed. Twenty years earlier,
Feynman had indeed systematised the problem of calculation and introduced
Feynman diagrams that were rapidly accepted by researchers. But at that time
there were no computers. Veltman believed firmly in the possibility of finding a
way of renormalizing the theory and his computer program was the cornerstone
of the comprehensive work of testing different ideas.



Where it began

1960s-early 70s: MIT project MAC [Moses]
∫

1+(x+1)ndx = x+(x+1)n+1/(n+1), n 6= −1

S. C. Johnson, “Tricks for Improving Kronecker’s Method,” Bell
Laboratories Report 1966.

Berlekamp/Zassenhaus’s, Risch’s algorithms
∫ x+1

x4 e1/xdx = −x2− x+1
x2 e1/x

B. G. Claybrook, “A new approach to the symbolic factorization of
multivariate polynomials,” Artificial Intelligence, vol. 7, (1976),
pp. 203–241.



> # Example by Corless and Jeffrey

> f := 1/(sin(x) + 2);

f :=
1

sin(x)+2

> g := int(f, x);

g :=
2
3

√
3arctan(

1
3

(2tan(
1
2

x)+1)
√

3)

> plot(g, x=-5..5);
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Factorization of “noisy” polynomials over the complex numbers

81x4 +16y4−648z4 +72x2y2−648x2−288y2 +1296 = 0

(9x2 +4y2 +18
√

2z2−36)(9x2 +4y2−18
√

2z2−36) = 0

81x4 +16y4−648.003z4 +72x2y2 + .002x2z2 + .001y2z2

− 648x2 − 288y2 − .007z2 + 1296 = 0



The Approximate Factorization Problem [LATIN ’94]

Given f ∈ C[x,y] irreducible, find f̃ ∈ C[x,y] such that
deg f̃ ≤ deg f , f̃ factors, and ‖ f − f̃‖ is minimal.



The Approximate Factorization Problem [LATIN ’94]

Given f ∈ C[x,y] irreducible, find f̃ ∈ C[x,y] such that
deg f̃ ≤ deg f , f̃ factors, and ‖ f − f̃‖ is minimal.

Problem depends on choice of distance norm ‖ · ‖, and
notion of degree.

We use Euclidean-norm, and multi-degree: mdeg f =(degx f ,degy f )



The Approximate Factorization Problem [LATIN ’94]

Given f ∈ C[x,y] irreducible, find f̃ ∈ C[x,y] such that
deg f̃ ≤ deg f , f̃ factors, and ‖ f − f̃‖ is minimal.

Problem depends on choice of distance norm ‖ · ‖, and
notion of degree.

We use Euclidean-norm, and multi-degree: mdeg f =(degx f ,degy f )

Degree bound is important:
(1+δx) f is reducible but for δ < ε/‖ f‖,

‖(1+δx) f − f‖ = ‖δx f‖ = δ‖ f‖ < ε
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Status of the Approximate Factorization Problem

• No polynomial time algorithm (except for constant degree fac-
tors [Hitz, Kaltofen, Lakshman ’99])

• Several algorithms and heuristics to find a nearby factorizable
f̂ if f is “nearly factorizable”
[Corless et al. ’01 & ’02, Galligo and Rupprecht ’01,
Galligo and Watt ’97, Huang et al. ’00, Sasaki ’01,...]

• There are lower bounds for min‖ f − f̃‖ (“irreducibility radius”)
[Kaltofen and May ISSAC 2003]



Our ISSAC’04 Results [Gao, Kaltofen, May, Yang, Zhi]

An algorithmically-engineered practical algorithm to find the
factorization of a nearby factorizable polynomial given any f .

especially “noisy” f :
Given f = f1 f2 + fnoise,
we find f̄1, f̄2 such that ‖ f1 f2− f̄1 f̄2‖ ≈ ‖ fnoise‖
even for large noise: ‖ fnoise‖/‖ f‖ ≥ 10−3



Our ISSAC’04 Results [Gao, Kaltofen, May, Yang, Zhi]

An algorithmically-engineered practical algorithm to find the
factorization of a nearby factorizable polynomial given any f .

especially “noisy” f :
Given f = f1 f2 + fnoise,
we find f̄1, f̄2 such that ‖ f1 f2− f̄1 f̄2‖ ≈ ‖ fnoise‖
even for large noise: ‖ fnoise‖/‖ f‖ ≥ 10−3

Show challenge problem Maple worksheet.



Verschelde’s Stewart-Gouch Platform Benchmarks

Drexler’s 1992 nano Stewart platform



Another of my ECCAD’98 Challenge Problems: #7

Problem 7: Plug-and-play and generic programming
methodology for symbolic computation
Status : Open

Surprises from LinBox project using C++ allocators

myAllocator a;

myAllocator::pointer p = a.allocate(1);

a.construct(p,0); // effect: new((void*)p) T(0)

a.destroy(p); // effect: ((T*)p)->~T()

a.deallocate(p,1);



Another of my ECCAD’98 Challenge Problems: #7

Problem 7: Plug-and-play and generic programming
methodology for symbolic computation
Status : Open

Surprises from LinBox project using C++ allocators

myAllocator a;

myAllocator::pointer p = a.allocate(1);

a.construct(p,0); // effect: new((void*)p) T(0)

a.destroy(p); // effect: ((T*)p)->~T()

a.deallocate(p,1);

ANSI/ISO 14882 Section 20.1.5.4
“Implementations of containers ... are permitted to assume that
their Allocator template parameter meets the following two addi-
tional requirements ...
— the typedef members pointer, ... are required to be T* ...”



What is an algorithm?

– finite unambiguous list of steps (“control, program”)

– computes a function from D −→ E where D is infinite
(“infinite Turing tape”)

Ambiguity through randomization

– Monte Carlo (BPP): “always fast, probably correct”.
Examples: isprime

Lemma [DeMillo&Lipton’78, Schwartz/Zippel’79]
Let f ,g ∈ F[x1, . . . ,xn], f 6= g,S ⊆ F.

Probability( f (a1, . . . ,an) 6= g(a1, . . . ,an) | ai ∈ S)

≥ 1−max{deg( f ),deg(g)}/cardinality(S)

sparse polynomial interpolation, factorization, minimal polyno-
mial of a sparse matrix



Do we exactly know what the algorithm computes? E.g., in the
presence of floating point arithmetic?



Do we exactly know what the algorithm computes? E.g., in the
presence of floating point arithmetic?

– Las Vegas (RP): “always correct, probably fast”.
Examples: polynomial factorization in Zp[x], where p � 2.
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Do we exactly know what the algorithm computes? E.g., in the
presence of floating point arithmetic?

– Las Vegas (RP): “always correct, probably fast”.
Examples: polynomial factorization in Zp[x], where p � 2.
Determinant of a sparse matrix

De-randomization: conjectured slow-down is within polynomial
complexity.

Shuhong Gao, E. Kaltofen, and Lauder, A., “Deterministic distinct
degree factorization for polynomials over finite fields,” 2001.

M. Agrawal, N. Kayal, N. Saxena, “PRIMES is in P,” 2002.



Kabanets and Impagliazzo [STOC 2003]
If Schwartz/Zippel can be de-randomized (subexponentially), then
there do not exist polynomial-size circuits for NEXP or the per-
manent.



Kabanets and Impagliazzo [STOC 2003]
If Schwartz/Zippel can be de-randomized (subexponentially), then
there do not exist polynomial-size circuits for NEXP or the per-
manent.

Efficiency dilemma: the higher the confidence in the result, the
more time it takes to compute it.



Black box polynomials

x1, . . . ,xn ∈ F
−−−−−−−−−−−→

f (x1, . . . ,xn) ∈ F
−−−−−−−−−−−−−−→

f ∈ F[x1, . . . ,xn]
F an arbitrary field, e.g., rationals, reals, complexes

Perform polynomial algebra operations, e.g., factorization with

(n ·deg( f ))O(1)







black box calls,
arithmetic operations in F and
randomly selected elements in F



Black box matrices

y ∈ F
n

−−−−−−→
A · y ∈ F

n

−−−−−−−−→

A ∈ F
n×n singular

F an arbitrary, e.g., finite field

Perform linear algebra operations, e.g., A−1b [Wiedemann 86]
with

O(n) black box calls and
n2(logn)O(1) arithmetic operations in F and

O(n) intermediate storage for field elements

Project LinBox [www.linalg.org]: an exact Matlab



Black box manipulation (“functional programming”):
Factorization [Kaltofen and Trager 1988]

p1, . . . , pn ∈ F−−−−−−−−−−−→

Precomputed data including e1, . . . ,en.
Program makes “oracle calls”:

a1, . . . ,an−−−−−−−−−→

f (x1, . . . ,xn)

f (a1, . . . ,an)−−−−−−−−−−→

b1, . . . ,bn−−−−−−−−−→

f (x1, . . . ,xn)

f (b1, . . . ,bn)−−−−−−−−−−→

...
c1, . . . ,cn−−−−−−−−−→

f (x1, . . . ,xn)

f (c1, . . . ,cn)−−−−−−−−−−→

. . .

f (x1, . . . ,xn) = h1(x1, . . . ,xn)
e1 · · ·hr(x1, . . . ,xn)

er

hi ∈ F[x1, . . . ,xn] irreducible.

h1(p1, . . . , pn)−−−−−−−−−−−−−→
h2(p1, . . . , pn)−−−−−−−−−−−−−→

...

hr(p1, . . . , pn)−−−−−−−−−−−−−→



Given a black box

p1, . . . , pn ∈ F
−−−−−−−−−−−→

f (p1, . . . , pn) ∈ F
−−−−−−−−−−−−−−→

f (x1, . . . ,xn) ∈ F[x1, . . . ,xn]
F a field

compute by multiple evaluation of this black box the
sparse representation of f

f (x1, . . . ,xn) =
t

∑
i=1

aix
ei,1
1 · · ·xei,n

n , ai 6= 0

Many algorithms that are polynomial-time in deg( f ),n, t :

Zippel 1979, 1988; Ben-Or, Tiwari 1988
Kaltofen, Lakshman, Wiley 1988, 1990
Grigoriev, Karpinski, Singer 1988
Kaltofen, Lee, Lobo 2000, 2003
Mansour 1992; Giesbrecht, Lee, Labahn 2003: numerical method



FoxBox [Dı́az, Kaltofen 1998] example: determinant of symmet-
ric Toeplitz matrix

det(













a0 a1 . . . an−2 an−1

a1 a0 . . . an−3 an−2
... ... . . . ... ...

an−2 an−3 . . . a0 a1

an−1 an−2 . . . a1 a0













)

= F1(a0, . . . ,an−1) ·F2(a0, . . . ,an−1).

over the integers.



Serialization of factors box of 8 by 8 symmetric Toeplitz matrix
modulo 65521

15,8,-1,1,2,2,-1,8,1,7,1,1,20752,-1,1,39448,33225,984,17332,53283,
35730,23945,13948,22252,52005,13703,8621,27776,33318,2740,
4472,36959,17038,55127,16460,26669,39430,1,0,1,4,20769,16570,
58474,30131,770,4,25421,22569,51508,59396,10568,4,20769,16570,
58474,30131,770,8,531,55309,40895,38056,34677,30870,397,59131,
12756,3,13601,54878,13783,39334,3,41605,59081,10842,15125,
3,45764,5312,9992,25318,3,59301,18015,3739,13650,3,23540,44673,
45053,33398,3,4675,39636,45179,40604,3,49815,29818,2643,16065,
3,46787,46548,12505,53510,3,10439,37666,18998,32189,3,38967,
14338,31161,12779,3,27030,21461,12907,22939,3,24657,32725,
47756,22305,3,44226,9911,59256,54610,3,56240,51924,26856,52915,
3,16133,61189,17015,39397,3,24483,12048,40057,21323



Serialization of checkpoint during sparse interpolation

28, 14, 9, 64017, 31343, 5117, 64185, 47755, 27377, 25604,
6323, 41969, 14, 3, 4, 0, 0, 3, 4, 0, 1, 3, 4, 0, 2, 3, 4, 0, 3, 3,
4, 0, 4, 3, 4, 1, 0, 3, 4, 1, 1, 3, 4, 1, 2, 3, 4, 1, 3, 3, 4, 2, 0, 3, 4, 2,
1, 3, 4, 2, 2, 3, 4, 3, 0, 3, 4, 3, 1, 14, 59877, 1764, 59012, 44468,
1, 19485, 25871, 3356, 2, 58834, 49014, 65518, 15714, 65520, 1,
2, 4, 4, 1, 1



Numerical Randomized (Monte Carlo)
more efficiency, but more efficiency, but
approximate result uncertain result
ill-conditionedness unfavorable inputs:
near singular inputs pseudo-primes,

∑i ∏ j(xi− j),
Coppersmith’s “pathological” matrices

convergence analysis probabilistic analysis
try algorithms on try algorithms
unproven inputs with limited randomness

Numerical + randomized, e.g., approximate factorizer:
all of the above (?)
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– Is algorithmic in nature, i.e., always terminates with a result of
possibly unknown validity
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Hallmarks of a good heuristic

– Is algorithmic in nature, i.e., always terminates with a result of
possibly unknown validity

– Is a proven complete solution in a more stringent setting, for
example, by restricting the inputs or by slowing the algorithm

– Has an experimental track record, for example, works on 50%
of cases



Letter by Gödel to John von Neumann 1956

Princeton 20./III. 1956
Goedl

Lieber Herr v. Neumann!



Letter by Gödel to John von Neumann 1956

... Such strong speedups
[N to (logN)2] can occur for other finite problems, e.g. when
computing the quadratic residuosity by repeated application of the
reciprocity law.



Letter by Gödel to John von Neumann 1956

... It would be interesting to know, how it is
with that, e.g. about the decision if a number is a prime number, a.
how much in general for finite combinatorial problems the number
of steps can be reduced versus trying all possibilities.



RSA with exponent 3

Private key: two prime numbers P ≡ Q ≡ 2 (mod 3)
Public key: K = P ·Q

Encryption of clear text M ∈ ZK

N = EK(M) = (M3 mod K)

Running time: 2 multiplications modulo K

Decryption of cipher text N ∈ ZK

M = DP,Q(N) = (NX mod K) where X =
(P−1)(Q−1)+1

3
Running time: ≈ 1.5log2 K multiplications modulo K
For log2 K = 512: ≈ 380-times slower than encryption



A Protocol for Spam Prevention [M. Naor et al., CRYPTO 2003]



From: "Dr. Cecilia Samarachi (Mrs)" <C.Samara91Dr@netscape.net>

Date: Sun, 25 May 2003 13:15:39

To: kaltofen@math.ncsu.edu

Dear Friend, VERY URGENT BUSINESS RELATIONSHIP.

...

My Ministry wants to award some major contracts and this contracts have been

approved, implementation is on the pipeline and this contract is on supply

of AGRICULTURAL CHEMICAL AND DRUGS/INJECTIONS FOR COW TREATMENT.

...

1. I want to use this last opportunity while still in the office to extract

some money by inflating this contract to be awarded, and the over-invoiced

amount I will use to establish my own hospital in U.K. or Germany after the

transaction.

2. The inflated money (over-invoiced) from this contract will be immediately

paid (Transfered) to my account in U.K. on confirmation of payment to your

Bank.

3. I sincerely promise to approve your quotations on submission at all cost,

provided my additional amount in your quotation will be 100% safe, immediately

payment is made to your company. We would sign an agreement for the security

and safety for my secret commission from the (over-invoiced) contarct.

...

Yours Faithfully,

Dr.(Mrs) Cecilia Samarachi.



Main idea: 1. take the unique message header as numeric data
2. spammer must perform “hard” computation

and submit result with message
3. recipient “easily” checks result before accepting

message



Main idea: 1. take the unique message header as numeric data
2. spammer must perform “hard” computation

and submit result with message
3. recipient “easily” checks result before accepting

message

Example: for message data N, compute digital signature M and
“small” δ such that

M = DP,Q(N +δ) and 105 divides M.

Note: 105 DP,Q’s are much slower than verification that
|N −EK(M)| is small.



Dwork, Goldberg, Naor design random table-lookup scheme that
causes cache faults

NEEDED: non-localizable algorithmic problems whose results are
easy to check

My suggestion: let spammer contribute to common good by
spinning on a useful symbolic computation like a factorization,
Gröbner basis,... problem



Thanks For the Fireworks


