
ISSAC’04
Approximate Factorization of Multivariate

Polynomials via Differential Equations

Shuhong Gao Erich Kaltofen, John May Zhengfeng Yang, Lihong Zhi

Clemson NCSU AMSS

http://www.math.ncsu.edu/˜kaltofen/software/appfac/

– p.1

http://www.math.ncsu.edu/~kaltofen/software/appfac/

Approximate Factorization Problem [Kaltofen ’94]

Given f ∈ C[x,y] irreducible, find f̃ ∈ C[x,y] s.t. deg f̃ ≤ deg f ,
f̃ factors, and ‖ f − f̃‖ is minimal.

Problem depends on choice of norm ‖ · ‖, and
notion of degree.

We use 2-norm, and multi-degree: mdeg f = (degx f ,degy f)

Degree bound is important:
(1+δx) f is reducible but for δ < ε/‖ f‖,

‖(1+δx) f − f‖ = ‖δx f‖ = δ‖ f‖ < ε

– p.2

Approximate Factorization Problem [Kaltofen ’94]

Given f ∈ C[x,y] irreducible, find f̃ ∈ C[x,y] s.t. deg f̃ ≤ deg f ,
f̃ factors, and ‖ f − f̃‖ is minimal.

Problem depends on choice of norm ‖ · ‖, and
notion of degree.

We use 2-norm, and multi-degree: mdeg f = (degx f ,degy f)

Degree bound is important:
(1+δx) f is reducible but for δ < ε/‖ f‖,

‖(1+δx) f − f‖ = ‖δx f‖ = δ‖ f‖ < ε

– p.2

Approximate Factorization Problem [Kaltofen ’94]

Given f ∈ C[x,y] irreducible, find f̃ ∈ C[x,y] s.t. deg f̃ ≤ deg f ,
f̃ factors, and ‖ f − f̃‖ is minimal.

Problem depends on choice of norm ‖ · ‖, and
notion of degree.

We use 2-norm, and multi-degree: mdeg f = (degx f ,degy f)

Degree bound is important:
(1+δx) f is reducible but for δ < ε/‖ f‖,

‖(1+δx) f − f‖ = ‖δx f‖ = δ‖ f‖ < ε

– p.2

State of the Approximate Factorization

• No polynomial time algorithm

• Several algorithms and heuristics to find a nearby
factorizable f̂ if f is “nearly factorizable”
[Corless et al. ’01 & ’02, Galligo and Rupprecht ’01,
Galligo and Watt ’97, Huang et al. ’00, Sasaki ’01]

• There are lower bounds for min‖ f − f̃‖
[Kaltofen and May ISSAC 2003]

– p.3

State of the Approximate Factorization

• No polynomial time algorithm

• Several algorithms and heuristics to find a nearby
factorizable f̂ if f is “nearly factorizable”
[Corless et al. ’01 & ’02, Galligo and Rupprecht ’01,
Galligo and Watt ’97, Huang et al. ’00, Sasaki ’01]

• There are lower bounds for min‖ f − f̃‖
[Kaltofen and May ISSAC 2003]

– p.3

State of the Approximate Factorization

• No polynomial time algorithm

• Several algorithms and heuristics to find a nearby
factorizable f̂ if f is “nearly factorizable”
[Corless et al. ’01 & ’02, Galligo and Rupprecht ’01,
Galligo and Watt ’97, Huang et al. ’00, Sasaki ’01]

• There are lower bounds for min‖ f − f̃‖
[Kaltofen and May ISSAC 2003]

– p.3

Our Results
• A new practical algorithm to compute approximate

multivariate GCDs

• A practical algorithm to find the factorization of a nearby
factorizable polynomial given any f

especially “noisy” f :
Given f = f1 f2 + fnoise,
we find f̄1, f̄2 s.t. ‖ f1 f2 − f̄1 f̄2‖ ≈ ‖ fnoise‖

even for large noise: ‖ fnoise‖/‖ f‖ ≥ 10−3

– p.4

Our Results
• A new practical algorithm to compute approximate

multivariate GCDs

• A practical algorithm to find the factorization of a nearby
factorizable polynomial given any f

especially “noisy” f :
Given f = f1 f2 + fnoise,
we find f̄1, f̄2 s.t. ‖ f1 f2 − f̄1 f̄2‖ ≈ ‖ fnoise‖

even for large noise: ‖ fnoise‖/‖ f‖ ≥ 10−3

– p.4

Maple Demonstration

– p.5

Ruppert’s Theorem

f ∈ K[x,y], mdeg f = (m,n)

K is a field, algebraically closed, and characteristic 0

Theorem. f is reducible ⇐⇒ ∃g,h ∈ K[x,y], non-zero,

∂
∂y

g
f
−

∂
∂x

h
f

= 0

mdeg g ≤ (m−2,n) , mdeg h ≤ (m,n−1)

PDE linear system in the coefficients of g and h

– p.6

Ruppert’s Theorem

f ∈ K[x,y], mdeg f = (m,n)

K is a field, algebraically closed, and characteristic 0

Theorem. f is reducible ⇐⇒ ∃g,h ∈ K[x,y], non-zero,

∂
∂y

g
f
−

∂
∂x

h
f

= 0

mdeg g ≤ (m−2,n) , mdeg h ≤ (m,n−1)

PDE linear system in the coefficients of g and h

– p.6

Gao’s PDE based Factorizer
Change degree bound: mdeg g ≤ (m−1,n),mdeg h ≤ (m,n−1)

so that: # linearly indep. solutions to the PDE = # factors of f

Require square-freeness: GCD(f , ∂ f
∂x) = 1

Let
G = SpanC{g | [g,h] is a solution to the PDE)}.

Any solution g ∈ G gives a factorization:

f = ∏
λ∈C

gcd(f ,g−λ fx)

with high probability ∃ distinct λi s.t. fi = gcd(f ,g−λi fx)
fi’s distinct irreducible factors of f

– p.7

Gao’s PDE based Factorizer
Change degree bound: mdeg g ≤ (m−1,n),mdeg h ≤ (m,n−1)

so that: # linearly indep. solutions to the PDE = # factors of f

Require square-freeness: GCD(f , ∂ f
∂x) = 1

Let
G = SpanC{g | [g,h] is a solution to the PDE)}.

Any solution g ∈ G gives a factorization:

f = ∏
λ∈C

gcd(f ,g−λ fx)

with high probability ∃ distinct λi s.t. fi = gcd(f ,g−λi fx)
fi’s distinct irreducible factors of f

– p.7

Gao’s PDE based Factorizer

Algorithm
Input: f ∈ K[x,y], K ⊆ C

Output: f1, . . . , fr ∈ C[x,y]

1. Find a basis for the linear space G, and choose a random
element g ∈ G.

2. Compute the polynomial Eg = ∏i(z−λi) via an eigenvalue
formulation
If Eg not squarefree, choose a new g

3. Compute the factors fi = gcd(f ,g−λi fx) in K(λi).

In exact arithmetic the extention field K(λi) is found via
univariate factorization.

– p.8

Adapting to the Approximate Case

The following must be solved to create an approximate factorizer
from Gao’s algorithm:

1. Computing approximate GCDs of bivariate polynomials;

2. Determining the numerical dimension of G, and computing
an approximate solution g;

3. Computing a g s.t. the polynomial Eg has no clusters of
roots.

– p.9

Determining the Number of Approximate Factors

Let Rup(f) be the matrix from Gao’s algorithm
Recall:

of factors of f = Nullity(Rup(f))

If f is irreducible
largest gap in the sing. values of Rup(f) # of approx. factors

– p.10

Determining the Number of Approximate Factors

Let Rup(f) be the matrix from Gao’s algorithm
Recall:

of factors of f = Nullity(Rup(f))

Rup(f) has nullity r if
σm ≥ . . . ≥ σr+1 6= 0 and σr = . . . = σ1 = 0.

Say Rup(f) has nullity r with tolerance ε if:

σm ≥ . . . ≥ σr+1 > ε ≥ σr ≥ . . . ≥ σ1

Find a "best" ε from the largest gap
choose ε = σr s.t. σr+1/σr is maximal

If f is irreducible
largest gap in the sing. values of Rup(f) # of approx. factors

– p.10

Determining the Number of Approximate Factors

If f is irreducible
largest gap in the sing. values of Rup(f) # of approx. factors

Recall:

G = SpanC{g | [g,h] ∈ Nullspace(Rup(f))}

If r is position of the largest gap in the sing. values of Rup(f),
approx. version of G is Span of last r sing. vectors of Rup(f)

– p.10

Approximate Factorization

Input: f ∈ C[x,y] abs. irreducible, approx. square-free
Output: f1, . . . , fr approx. factors of f , and c

1. Compute the SVD of Rup(f), determine r, its approximate
nullity, and choose g = ∑aigi, a random linear combination
of the last r right singular vectors

2. compute Eg and its roots via an eigenvalue computation

3. For each λi compute the approximate GCD
fi = gcd(f ,g−λi f) and find an optimal scaling:
minc ‖ f − c ∏r

i=1 fi‖

– p.11

Notes on the Repeated Factor Case

We say f is approximately square-free if:

dist. to nearest reducible poly. < dist. to nearest non-square-free poly.

We handle the repeated factor case differently than usual:
without iterating approximate GCDs:

Compute the approximate quotient f̄ of f and gcd(f , fx) and
factor the approximately square-free kernel f̄

Determine multiplicity of approximate factors fi by comparing
the degrees of the approximate GCDs:

gcd(fi,∂k f /∂xk)

– p.12

Notes on the Repeated Factor Case

We say f is approximately square-free if:

dist. to nearest reducible poly. < dist. to nearest non-square-free poly.

We handle the repeated factor case differently than usual:
without iterating approximate GCDs:

Compute the approximate quotient f̄ of f and gcd(f , fx) and
factor the approximately square-free kernel f̄

Determine multiplicity of approximate factors fi by comparing
the degrees of the approximate GCDs:

gcd(fi,∂k f /∂xk)

– p.12

Notes on the Repeated Factor Case

We say f is approximately square-free if:

dist. to nearest reducible poly. < dist. to nearest non-square-free poly.

We handle the repeated factor case differently than usual:
without iterating approximate GCDs:

Compute the approximate quotient f̄ of f and gcd(f , fx) and
factor the approximately square-free kernel f̄

Determine multiplicity of approximate factors fi by comparing
the degrees of the approximate GCDs:

gcd(fi,∂k f /∂xk)

– p.12

Table of Benchmarks

Example tdeg(fi)
σr+1

σr

σr
‖R(f)‖2

coeff.

error

backward

error
time(sec)

Nagasaka’02 2,3 11 10−3 10−2 1.08e–2 14.631

Kaltofen’00 2,2 109 10−10 10−4 1.02e–9 13.009

Sasaki’01 5,5 109 10−10 10−13 8.30e–10 5.258

Sasaki’01 10,10 105 10−6 10−7 1.05e–6 85.96

Corless et al’01 7,8 107 10−8 10−9 1.41e–8 19.628

Corless et al’02 3,3,3 108 10−10 0 1.29e–9 9.234

Zeng’04 (5)3,3,(2)4 107 10−9 10−10 2.09e–7 73.52

Example tdeg(fi)
σr+1

σr

σr
‖R(f)‖2

coeff.

error

backward

error
time(sec)

Random (fi ∈ Z) 9,7 486 10−4 10−4 2.14e–4 43.823

" 6,6,10 103 10−6 10−5 2.47e–4 539.67

" 4,4,4,4,4 273 10−6 10−5 1.31e–3 3098.

" 3,3,3 1.70 10−3 10−1 7.93e–1 29.25

" 18,18 104 10−7 10−6 3.75e–6 3173.

" 12,7,5 8.34 10−4 10−3 8.42e–3 4370.

Not Sqr Free 5,(5)2 103 10−5 10−5 6.98e–5 34.28

3 variables 5,5 104 10−5 10−5 1.72e–5 332.99

fi ∈ C 6,6 106 10−8 10−7 2.97e–7 30.034

– p.13

Table of Benchmarks

Example tdeg(fi)
σr+1

σr

σr
‖R(f)‖2

coeff.

error

backward

error
time(sec)

Random (fi ∈ Z) 9,7 486 10−4 10−4 2.14e–4 43.823

" 6,6,10 103 10−6 10−5 2.47e–4 539.67

" 4,4,4,4,4 273 10−6 10−5 1.31e–3 3098.

" 3,3,3 1.70 10−3 10−1 7.93e–1 29.25

" 18,18 104 10−7 10−6 3.75e–6 3173.

" 12,7,5 8.34 10−4 10−3 8.42e–3 4370.

Not Sqr Free 5,(5)2 103 10−5 10−5 6.98e–5 34.28

3 variables 5,5 104 10−5 10−5 1.72e–5 332.99

fi ∈ C 6,6 106 10−8 10−7 2.97e–7 30.034

Example tdeg(fi)
σr+1

σr

σr
‖R(f)‖2

coeff.

error

backward

error
time(sec)

Random (fi ∈ Z) 9,7 486 10−4 10−4 2.14e–4 43.823

" 6,6,10 103 10−6 10−5 2.47e–4 539.67

" 4,4,4,4,4 273 10−6 10−5 1.31e–3 3098.

" 3,3,3 1.70 10−3 10−1 7.93e–1 29.25

" 18,18 104 10−7 10−6 3.75e–6 3173.

" 12,7,5 8.34 10−4 10−3 8.42e–3 4370.

Not Sqr Free 5,(5)2 103 10−5 10−5 6.98e–5 34.28

3 variables 5,5 104 10−5 10−5 1.72e–5 332.99

fi ∈ C 6,6 106 10−8 10−7 2.97e–7 30.034

– p.13

Table of Benchmarks

Example tdeg(fi)
σr+1

σr

σr
‖R(f)‖2

coeff.

error

backward

error
time(sec)

Random (fi ∈ Z) 9,7 486 10−4 10−4 2.14e–4 43.823

" 6,6,10 103 10−6 10−5 2.47e–4 539.67

" 4,4,4,4,4 273 10−6 10−5 1.31e–3 3098.

" 3,3,3 1.70 10−3 10−1 7.93e–1 29.25

" 18,18 104 10−7 10−6 3.75e–6 3173.

" 12,7,5 8.34 10−4 10−3 8.42e–3 4370.

Not Sqr Free 5,(5)2 103 10−5 10−5 6.98e–5 34.28

3 variables 5,5 104 10−5 10−5 1.72e–5 332.99

fi ∈ C 6,6 106 10−8 10−7 2.97e–7 30.034

– p.13

More than two variables

• Everything can be generalized to many variables directly
(w/o projecting to 2-variables)

• Our multivariate implementation together with Wen-shin
Lee’s numerical sparse interpolation implementation
quickly factors polynomials arising in engineering
Stewart-Gough platforms

Polynomials were 3 variables, factor mult. up to 5,
coefficient error 10−16, and were provided by to us Jan
Verschelde

– p.14

More than two variables

• Everything can be generalized to many variables directly
(w/o projecting to 2-variables)

• Our multivariate implementation together with Wen-shin
Lee’s numerical sparse interpolation implementation
quickly factors polynomials arising in engineering
Stewart-Gough platforms

Polynomials were 3 variables, factor mult. up to 5,
coefficient error 10−16, and were provided by to us Jan
Verschelde

– p.14

Future Work
• Factorization algorithm can be modified to use only

iterative blackbox methods to compute singular
values/vectors

Rup(f) ·v costs 4 polynomial multiplications

Should make very large problems possible

• Replace SVD techniques with Structured SVD/Total least
squares

• Find robust "noisy" sparse interpolation to handle sparse
multivariate problems

– p.15

Future Work
• Factorization algorithm can be modified to use only

iterative blackbox methods to compute singular
values/vectors

Rup(f) ·v costs 4 polynomial multiplications

Should make very large problems possible
• Replace SVD techniques with Structured SVD/Total least

squares

• Find robust "noisy" sparse interpolation to handle sparse
multivariate problems

– p.15

Future Work
• Factorization algorithm can be modified to use only

iterative blackbox methods to compute singular
values/vectors

Rup(f) ·v costs 4 polynomial multiplications

Should make very large problems possible
• Replace SVD techniques with Structured SVD/Total least

squares
• Find robust "noisy" sparse interpolation to handle sparse

multivariate problems

– p.15

Code + Benchmarks at:
http://www.mmrc.iss.ac.cn/˜lzhi/Research/appfac.html

or
http://www.math.ncsu.edu/˜kaltofen/

click on “Software”

– p.16

http://www.mmrc.iss.ac.cn/~lzhi/Research/appfac.html
http://www.math.ncsu.edu/~kaltofen/

	Approximate Factorization Problem [Kaltofen '94]
	State of the Approximate Factorization
	Our Results
	Maple Demonstration
	Ruppert's Theorem
	Gao's PDE based Factorizer
	Gao's PDE based Factorizer
	Adapting to the Approximate Case
	Determining the Number of Approximate Factors
	Approximate Factorization
	Notes on the Repeated Factor Case
	Table of Benchmarks
	More than two variables
	Future Work
	Code + Benchmarks at: \ {	iny url {http://www.mmrc.iss.ac.cn/~lzhi/Research/appfac.html}} \ {�lack or} \ small url {http://www.math.ncsu.edu/~kaltofen/} \ {�lack click on ``Software''}

