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Approximate Factorization Problem [Kaltofen ’94]

Given f ∈ C[x,y] irreducible, find f̃ ∈ C[x,y] s.t. deg f̃ ≤ deg f ,
f̃ factors, and ‖ f − f̃‖ is minimal.

Problem depends on choice of norm ‖ · ‖, and
notion of degree.

We use 2-norm, and multi-degree: mdeg f = (degx f ,degy f )

Degree bound is important:
(1+δx) f is reducible but for δ < ε/‖ f‖,

‖(1+δx) f − f‖ = ‖δx f‖ = δ‖ f‖ < ε
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State of the Approximate Factorization

• No polynomial time algorithm

• Several algorithms and heuristics to find a nearby
factorizable f̂ if f is “nearly factorizable”
[Corless et al. ’01 & ’02, Galligo and Rupprecht ’01,
Galligo and Watt ’97, Huang et al. ’00, Sasaki ’01]

• There are lower bounds for min‖ f − f̃‖
[Kaltofen and May ISSAC 2003]
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Our Results
• A new practical algorithm to compute approximate

multivariate GCDs

• A practical algorithm to find the factorization of a nearby
factorizable polynomial given any f

especially “noisy” f :
Given f = f1 f2 + fnoise,
we find f̄1, f̄2 s.t. ‖ f1 f2 − f̄1 f̄2‖ ≈ ‖ fnoise‖

even for large noise: ‖ fnoise‖/‖ f‖ ≥ 10−3
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Maple Demonstration
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Ruppert’s Theorem

f ∈ K[x,y], mdeg f = (m,n)

K is a field, algebraically closed, and characteristic 0

Theorem. f is reducible ⇐⇒ ∃g,h ∈ K[x,y], non-zero,

∂
∂y

g
f
−

∂
∂x

h
f

= 0

mdeg g ≤ (m−2,n) , mdeg h ≤ (m,n−1)

PDE linear system in the coefficients of g and h

– p.6



Ruppert’s Theorem

f ∈ K[x,y], mdeg f = (m,n)

K is a field, algebraically closed, and characteristic 0

Theorem. f is reducible ⇐⇒ ∃g,h ∈ K[x,y], non-zero,

∂
∂y

g
f
−

∂
∂x

h
f

= 0

mdeg g ≤ (m−2,n) , mdeg h ≤ (m,n−1)

PDE linear system in the coefficients of g and h

– p.6



Gao’s PDE based Factorizer
Change degree bound: mdeg g ≤ (m−1,n),mdeg h ≤ (m,n−1)

so that: # linearly indep. solutions to the PDE = # factors of f

Require square-freeness: GCD( f , ∂ f
∂x ) = 1

Let
G = SpanC{g | [g,h] is a solution to the PDE)}.

Any solution g ∈ G gives a factorization:

f = ∏
λ∈C

gcd( f ,g−λ fx)

with high probability ∃ distinct λi s.t. fi = gcd( f ,g−λi fx)
fi’s distinct irreducible factors of f
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Gao’s PDE based Factorizer

Algorithm
Input: f ∈ K[x,y], K ⊆ C

Output: f1, . . . , fr ∈ C[x,y]

1. Find a basis for the linear space G, and choose a random
element g ∈ G.

2. Compute the polynomial Eg = ∏i(z−λi) via an eigenvalue
formulation
If Eg not squarefree, choose a new g

3. Compute the factors fi = gcd( f ,g−λi fx) in K(λi).

In exact arithmetic the extention field K(λi) is found via
univariate factorization.
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Adapting to the Approximate Case

The following must be solved to create an approximate factorizer
from Gao’s algorithm:

1. Computing approximate GCDs of bivariate polynomials;

2. Determining the numerical dimension of G, and computing
an approximate solution g;

3. Computing a g s.t. the polynomial Eg has no clusters of
roots.
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Determining the Number of Approximate Factors

Let Rup( f ) be the matrix from Gao’s algorithm
Recall:

# of factors of f = Nullity(Rup( f ))

If f is irreducible
largest gap in the sing. values of Rup( f ) # of approx. factors
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Determining the Number of Approximate Factors

Let Rup( f ) be the matrix from Gao’s algorithm
Recall:

# of factors of f = Nullity(Rup( f ))

Rup( f ) has nullity r if
σm ≥ . . . ≥ σr+1 6= 0 and σr = . . . = σ1 = 0.

Say Rup( f ) has nullity r with tolerance ε if:

σm ≥ . . . ≥ σr+1 > ε ≥ σr ≥ . . . ≥ σ1

Find a "best" ε from the largest gap
choose ε = σr s.t. σr+1/σr is maximal
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Determining the Number of Approximate Factors

If f is irreducible
largest gap in the sing. values of Rup( f ) # of approx. factors

Recall:

G = SpanC{g | [g,h] ∈ Nullspace(Rup( f ))}

If r is position of the largest gap in the sing. values of Rup( f ),
approx. version of G is Span of last r sing. vectors of Rup( f )
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Approximate Factorization

Input: f ∈ C[x,y] abs. irreducible, approx. square-free
Output: f1, . . . , fr approx. factors of f , and c

1. Compute the SVD of Rup( f ), determine r, its approximate
nullity, and choose g = ∑aigi, a random linear combination
of the last r right singular vectors

2. compute Eg and its roots via an eigenvalue computation

3. For each λi compute the approximate GCD
fi = gcd( f ,g−λi f ) and find an optimal scaling:
minc ‖ f − c ∏r

i=1 fi‖
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Notes on the Repeated Factor Case

We say f is approximately square-free if:

dist. to nearest reducible poly. < dist. to nearest non-square-free poly.

We handle the repeated factor case differently than usual:
without iterating approximate GCDs:

Compute the approximate quotient f̄ of f and gcd( f , fx) and
factor the approximately square-free kernel f̄

Determine multiplicity of approximate factors fi by comparing
the degrees of the approximate GCDs:

gcd( fi,∂k f /∂xk)

– p.12



Notes on the Repeated Factor Case

We say f is approximately square-free if:

dist. to nearest reducible poly. < dist. to nearest non-square-free poly.

We handle the repeated factor case differently than usual:
without iterating approximate GCDs:

Compute the approximate quotient f̄ of f and gcd( f , fx) and
factor the approximately square-free kernel f̄

Determine multiplicity of approximate factors fi by comparing
the degrees of the approximate GCDs:

gcd( fi,∂k f /∂xk)

– p.12



Notes on the Repeated Factor Case

We say f is approximately square-free if:

dist. to nearest reducible poly. < dist. to nearest non-square-free poly.

We handle the repeated factor case differently than usual:
without iterating approximate GCDs:

Compute the approximate quotient f̄ of f and gcd( f , fx) and
factor the approximately square-free kernel f̄

Determine multiplicity of approximate factors fi by comparing
the degrees of the approximate GCDs:

gcd( fi,∂k f /∂xk)

– p.12



Table of Benchmarks

Example tdeg( fi)
σr+1

σr

σr
‖R( f )‖2

coeff.

error

backward

error
time(sec)

Nagasaka’02 2,3 11 10−3 10−2 1.08e–2 14.631

Kaltofen’00 2,2 109 10−10 10−4 1.02e–9 13.009

Sasaki’01 5,5 109 10−10 10−13 8.30e–10 5.258

Sasaki’01 10,10 105 10−6 10−7 1.05e–6 85.96

Corless et al’01 7,8 107 10−8 10−9 1.41e–8 19.628

Corless et al’02 3,3,3 108 10−10 0 1.29e–9 9.234

Zeng’04 (5)3,3,(2)4 107 10−9 10−10 2.09e–7 73.52

Example tdeg( fi)
σr+1

σr

σr
‖R( f )‖2

coeff.

error

backward

error
time(sec)

Random ( fi ∈ Z) 9,7 486 10−4 10−4 2.14e–4 43.823

" 6,6,10 103 10−6 10−5 2.47e–4 539.67

" 4,4,4,4,4 273 10−6 10−5 1.31e–3 3098.

" 3,3,3 1.70 10−3 10−1 7.93e–1 29.25

" 18,18 104 10−7 10−6 3.75e–6 3173.

" 12,7,5 8.34 10−4 10−3 8.42e–3 4370.

Not Sqr Free 5,(5)2 103 10−5 10−5 6.98e–5 34.28

3 variables 5,5 104 10−5 10−5 1.72e–5 332.99

fi ∈ C 6,6 106 10−8 10−7 2.97e–7 30.034
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More than two variables

• Everything can be generalized to many variables directly
(w/o projecting to 2-variables)

• Our multivariate implementation together with Wen-shin
Lee’s numerical sparse interpolation implementation
quickly factors polynomials arising in engineering
Stewart-Gough platforms

Polynomials were 3 variables, factor mult. up to 5,
coefficient error 10−16, and were provided by to us Jan
Verschelde
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Future Work
• Factorization algorithm can be modified to use only

iterative blackbox methods to compute singular
values/vectors

Rup( f ) ·v costs 4 polynomial multiplications

Should make very large problems possible

• Replace SVD techniques with Structured SVD/Total least
squares

• Find robust "noisy" sparse interpolation to handle sparse
multivariate problems

– p.15
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Code + Benchmarks at:
http://www.mmrc.iss.ac.cn/˜lzhi/Research/appfac.html

or
http://www.math.ncsu.edu/˜kaltofen/

click on “Software”
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