
Dagstuhl 2004

Approximate Factorization of Multivariate
Polynomials via Differential Equations

Erich Kaltofen

North Carolina State University

Webpage: Google→kaltofen

Joint work with Shuhong Gao, John May, Zhengfeng Yang, and
Lihong Zhi

– p.1

Approximate Factorization Problem [Kaltofen ’94]

Given f ∈ C[x,y], irreducible, find f̃ ∈ C[x,y] so that
deg f̃ ≤ deg f , f̃ factors, and ‖ f − f̃‖ is minimal.

Degree bound is important:

(1+δx) f is reducible but for δ < ε/‖ f‖,

‖(1+δx) f − f‖ = ‖δx f‖ = δ‖ f‖ < ε

– p.2

Approximate Factorization Problem [Kaltofen ’94]

Given f ∈ C[x,y], irreducible, find f̃ ∈ C[x,y] so that
deg f̃ ≤ deg f , f̃ factors, and ‖ f − f̃‖ is minimal.

Problem depends on choice of norm ‖ · ‖, and degree:

For f = x2 + y2 −1, the 2-norm, and total degree:

f̃ = (x−1)(x+1), ‖ f − f̃‖2 = 1.

Degree bound is important:

(1+δx) f is reducible but for δ < ε/‖ f‖,

‖(1+δx) f − f‖ = ‖δx f‖ = δ‖ f‖ < ε

– p.2

Approximate Factorization Problem [Kaltofen ’94]

Given f ∈ C[x,y], irreducible, find f̃ ∈ C[x,y] so that
deg f̃ ≤ deg f , f̃ factors, and ‖ f − f̃‖ is minimal.

Problem depends on choice of norm ‖ · ‖, and degree:

For rectangular degrees we get closer to f = x2 + y2 −1:

f̂ = (0.4906834y2 +0.8491482x−0.9073464)(x+1.214778)

= 0.596072y2+0.849148x2+0.490683xy2+0.124180x−1.102225,

‖ f − f̂‖2 ≈ 0.6727223.

Degree bound is important:

(1+δx) f is reducible but for δ < ε/‖ f‖,

‖(1+δx) f − f‖ = ‖δx f‖ = δ‖ f‖ < ε

– p.2

Approximate Factorization Problem [Kaltofen ’94]

Given f ∈ C[x,y], irreducible, find f̃ ∈ C[x,y] so that
deg f̃ ≤ deg f , f̃ factors, and ‖ f − f̃‖ is minimal.

Degree bound is important:

(1+δx) f is reducible but for δ < ε/‖ f‖,

‖(1+δx) f − f‖ = ‖δx f‖ = δ‖ f‖ < ε

– p.2

State of the Approximate Factorization
• There are currently no polynomial time algorithms to find

the closest polynomial which factors.
Best today: Constant degree factors [Hitz, Kaltofen,
Lakshman ISSAC ’99]

• There are several algorithms and heuristics to find
factorizable polynomials that are close to “nearly
factorizable” polynomials.

• There is a method for finding lower bounds on the distance
to the nearest polynomial which factors [Kaltofen and May
ISSAC 2003].

• Improved lower bounds together with improved
approximate factorizers may yield the nearest polynomial
which factors similarly to TSP problems.

– p.3

State of the Approximate Factorization
• There are currently no polynomial time algorithms to find

the closest polynomial which factors.
Best today: Constant degree factors [Hitz, Kaltofen,
Lakshman ISSAC ’99]

• There are several algorithms and heuristics to find
factorizable polynomials that are close to “nearly
factorizable” polynomials.

• There is a method for finding lower bounds on the distance
to the nearest polynomial which factors [Kaltofen and May
ISSAC 2003].

• Improved lower bounds together with improved
approximate factorizers may yield the nearest polynomial
which factors similarly to TSP problems.

– p.3

State of the Approximate Factorization
• There are currently no polynomial time algorithms to find

the closest polynomial which factors.
Best today: Constant degree factors [Hitz, Kaltofen,
Lakshman ISSAC ’99]

• There are several algorithms and heuristics to find
factorizable polynomials that are close to “nearly
factorizable” polynomials.

• There is a method for finding lower bounds on the distance
to the nearest polynomial which factors [Kaltofen and May
ISSAC 2003].

• Improved lower bounds together with improved
approximate factorizers may yield the nearest polynomial
which factors similarly to TSP problems.

– p.3

State of the Approximate Factorization
• There are currently no polynomial time algorithms to find

the closest polynomial which factors.
Best today: Constant degree factors [Hitz, Kaltofen,
Lakshman ISSAC ’99]

• There are several algorithms and heuristics to find
factorizable polynomials that are close to “nearly
factorizable” polynomials.

• There is a method for finding lower bounds on the distance
to the nearest polynomial which factors [Kaltofen and May
ISSAC 2003].

• Improved lower bounds together with improved
approximate factorizers may yield the nearest polynomial
which factors similarly to TSP problems.

– p.3

Wolfgang M. Ruppert’s Theorem

f ∈ K[x,y], deg f = (degx f ,degy f) = (m,n).

K is a field, algebraically closed, and characteristic 0.

Theorem. f is reducible ⇐⇒ ∃g,h ∈ K[x,y], non-zero,

∂
∂y

g
f
−

∂
∂x

h
f

= 0

degg ≤ (m−2,n) , degh ≤ (m,n−1).

The PDE leads to a set of equations linear in the coefficients of g
and h.

– p.4

Wolfgang M. Ruppert’s Theorem

f ∈ K[x,y], deg f = (degx f ,degy f) = (m,n).

K is a field, algebraically closed, and characteristic 0.

Theorem. f is reducible ⇐⇒ ∃g,h ∈ K[x,y], non-zero,

∂
∂y

g
f
−

∂
∂x

h
f

= 0

degg ≤ (m−2,n) , degh ≤ (m,n−1).

Bounds on the degrees of g and h eliminate the solution

g =
∂ f
∂x

, h =
∂ f
∂y

.

The PDE leads to a set of equations linear in the coefficients of g
and h.

– p.4

Wolfgang M. Ruppert’s Theorem

f ∈ K[x,y], deg f = (degx f ,degy f) = (m,n).

K is a field, algebraically closed, and characteristic 0.

Theorem. f is reducible ⇐⇒ ∃g,h ∈ K[x,y], non-zero,

f
∂g
∂y

−g
∂ f
∂y

+h
∂ f
∂x

− f
∂h
∂x

= 0

degg ≤ (m−2,n) , degh ≤ (m,n−1).

The PDE leads to a set of equations linear in the coefficients of g
and h.

– p.4

Gao’s Factorizer based on Ruppert’s Theorem

Change the degree bound: degg ≤ (m−1,n)
linearly indep. solutions to the PDE = # factors of f

Require square-freeness: GCD(f , ∂ f
∂x) = 1

If f = f1 · · · fr, then let

Ei =
f
fi

∂ fi

∂x
∈ C[x,y]

and
G = SpanC{g | [g,h] is a solution to the PDE)}.

Any solution g ∈ G satisfies g = ∑r
i λiEi. If the λi’s are distinct

then
fi = gcd(f ,g−λi fx).

– p.5

Gao’s Factorizer based on Ruppert’s Theorem

Change the degree bound: degg ≤ (m−1,n)
linearly indep. solutions to the PDE = # factors of f

Require square-freeness: GCD(f , ∂ f
∂x) = 1

If f = f1 · · · fr, then let

Ei =
f
fi

∂ fi

∂x
∈ C[x,y]

and
G = SpanC{g | [g,h] is a solution to the PDE)}.

Any solution g ∈ G satisfies g = ∑r
i λiEi. If the λi’s are distinct

then
fi = gcd(f ,g−λi fx).

– p.5

Gao’s Factorizer based on Ruppert’s Theorem

Algorithm

1. Find a basis for the linear space G, and choose a random
element g ∈ G.

2. Compute the r× r matrix Ag using g and the basis of G.

3. Factor CharPoly(Ag) = ∏i φi over Q.

Q[z]/φi(z) are the extensions in which the factors lie.

4. Compute (the equivalence class of) a factor
fi = gcd(f ,g−αi fx) with αi ≡ z ∈ Q[z]/φi(z).

– p.6

Adapting to the Approximate Case

The following problems must be solved in order to create an
approximate factorizer from Gao’s algorithm:

1. Computing approximate GCDs of bivariate polynomials;

2. Determining the numerical dimension of the solution space
of the PDE, and computing approximate solutions to the
PDE;

3. Computing a matrix Ag which has no clusters of
eigenvalues.

– p.7

The Generalized Sylvester Matrix

A pair g,h ∈ K[x,y] has a GCD of degree at least k iff there are
non-zero solutions u,v ∈ K[x,y] to:

ug+ vh = 0, degu ≤ deg(h)− k, degv ≤ deg(g)− k.

This system is linear in the coefficients of u and v.
The matrix of this system, Sylk(g,h) is the bivariate
generalization of the Sylvester matrix of g and h when k = 1.

– p.8

Determining the Degree of the GCD

In exact arithmetic: the degree of gcd(g,h) can be easily
determined from the rank deficiency of Syl1(g,h).

Numerically, rank deficiency is determined by the singular
values σi of Syl1(g,h) = UΣV.

Syl1(g,h) is exactly rank p if σ1 ≥ ·· · ≥ σp > 0 and
σp+1 = · · · = σm = 0.

We call Syl1(g,h) numerical rank p if for a chosen tolerance ε :

σ1 ≥ ·· · ≥ σp > ε ≥ σp+1 ≥ ·· · ≥ σm.

If ε is not given, we will find an ε from the largest gap. That is
ε = σp+1 so that σp/σp+1 is maximal.

– p.9

Determining the Degree of the GCD

In exact arithmetic: the degree of gcd(g,h) can be easily
determined from the rank deficiency of Syl1(g,h).

Numerically, rank deficiency is determined by the singular
values σi of Syl1(g,h) = UΣV.

Syl1(g,h) is exactly rank p if σ1 ≥ ·· · ≥ σp > 0 and
σp+1 = · · · = σm = 0.

We call Syl1(g,h) numerical rank p if for a chosen tolerance ε :

σ1 ≥ ·· · ≥ σp > ε ≥ σp+1 ≥ ·· · ≥ σm.

If ε is not given, we will find an ε from the largest gap. That is
ε = σp+1 so that σp/σp+1 is maximal.

– p.9

Computing the Exact GCD

Let k ≤ deg(gcd(g,h)), then the smallest degree solution to

ug+ vh = 0, degu ≤ deg(h)− k, degv ≤ deg(g)− k

is u = h1 = h/gcd(g,h), v = g1 = −g/gcd(g,h).

We can determine k = deg(gcd(g,h)) from the rank of Syl1(g,h).
For that k,

Nullspace(Sylk(g,h)) = SpanK{[h1,g1]}.

The GCD, d, is found by:
1. solving for null-vector [h1,g1] of Sylk(g,h)
2. dividing: d = h/h1 = g/g1.

– p.10

Computing the Exact GCD

Let k ≤ deg(gcd(g,h)), then the smallest degree solution to

ug+ vh = 0, degu ≤ deg(h)− k, degv ≤ deg(g)− k

is u = h1 = h/gcd(g,h), v = g1 = −g/gcd(g,h).

We can determine k = deg(gcd(g,h)) from the rank of Syl1(g,h).
For that k,

Nullspace(Sylk(g,h)) = SpanK{[h1,g1]}.

The GCD, d, is found by:
1. solving for null-vector [h1,g1] of Sylk(g,h)
2. dividing: d = h/h1 = g/g1.

– p.10

Computing the Exact GCD

Let k ≤ deg(gcd(g,h)), then the smallest degree solution to

ug+ vh = 0, degu ≤ deg(h)− k, degv ≤ deg(g)− k

is u = h1 = h/gcd(g,h), v = g1 = −g/gcd(g,h).

We can determine k = deg(gcd(g,h)) from the rank of Syl1(g,h).
For that k,

Nullspace(Sylk(g,h)) = SpanK{[h1,g1]}.

The GCD, d, is found by:
1. solving for null-vector [h1,g1] of Sylk(g,h)
2. dividing: d = h/h1 = g/g1.

– p.10

Computing the Approximate GCD
Input: g and h relatively prime
Output: d 6∈ C approx. GCD of g and h, and ε > 0 tolerance

1. Form Syl1(g,h)

2. Determine k, the degree of the approximate GCD of g and h
by finding the largest gap in the singular values of S and
inferring the degree from the numerical rank

3. Set ε = σp+1

4. Form Sylk(g,h) [has approximate rank 1]

5. Singular vector corresponding the smallest singular value
of Sylk(g,h) is the approximate null-vector [u,v]
[can compute with an iterative method]

6. Find a d that minimizes ‖h−d u‖2
2 +‖g+d v‖2

2, using least
squares [Approximate Division]

– p.11

Determining the Number of Approximate Factors

Denote the matrix from Gao’s algorithm Rup(f). Recall

of factors of f = Dim(Nullspace(Rup(f))).

If f is irreducible, find the number of approximate factors with
the approximate rank of Rup(f).

– p.12

Determining the Number of Approximate Factors

Denote the matrix from Gao’s algorithm Rup(f). Recall

of factors of f = Dim(Nullspace(Rup(f))).

If f is irreducible, find the number of approximate factors with
the approximate rank of Rup(f).

Like approximate GCD, approximate rank of Rup(f) is
determined by the largest gap in the singular values.
Recall:

G = SpanC{g | [g,h] ∈ Nullspace(Rup(f))}.

An approximate basis for G can be found from the singular
vectors corresponding to the smallest singular values of Rup(f).

– p.12

Determining the Number of Approximate Factors

Denote the matrix from Gao’s algorithm Rup(f). Recall

of factors of f = Dim(Nullspace(Rup(f))).

If f is irreducible, find the number of approximate factors with
the approximate rank of Rup(f).

Note:

Rup(f) always has at least one null-vector, [fx, fy], so r ≥ 1. Since

we are looking for approximate factors we will choose the largest

gap with r > 1.

– p.12

The Matrix Ag

Let {gi}
r
i=1 be a basis for G.

Let g = ∑sigi where si ∈ S ⊂ C are chosen randomly, and
independently.
Ag = [ai, j] is the unique r× r matrix such that

ggi ≡ ai, j g j fx(mod f) in C(y)[x].

Then:
f = ∏

λ∈Eigenvalues(Ag)

gcd(f ,g−λ f)

is a complete factorization of f over C with probability at least
1− r(r−1)/(2|S|).

– p.13

The Matrix Ag

Let {gi}
r
i=1 be a basis for G.

Let g = ∑sigi where si ∈ S ⊂ C are chosen randomly, and
independently.
Ag = [ai, j] is the unique r× r matrix such that

ggi ≡ ai, j g j fx(mod f) in C(y)[x].

Then:
f = ∏

λ∈Eigenvalues(Ag)

gcd(f ,g−λ f)

is a complete factorization of f over C with probability at least
1− r(r−1)/(2|S|).

– p.13

Approximate Factorization

Input: f ∈ Q[x,y] absolutely irreducible, approximately
square-free
Output: f1, . . . , fr approximate factors of f

1. Compute the SVD of Rup(f), and determine r, its rank
deficiency.

2. Set g1, . . . ,gr equal to the last r singular vectors of Rup(f).

3. Choose si ∈ S ⊂ C randomly and independently, set
g = ∑sigi

4. Compute Ag, and λ1, . . . ,λr its eigenvalues.
If any |λi −λ j| is too small compute a new random g.

5. For each λi compute the approximate GCD
fi = gcd(f ,g−λi f).

– p.14

Notes on the non-Square-free Case

Let δ be the rth smallest singular value of Rup(f).
Let ε be the tolerance of gcd(f , fx).
If ε ≤ δ, f is not approximately square-free.

One way to handle the non-square-free case:
Compute the approximate quotient f̄ of f and fx and factor the
approximately square-free kernel f̄ .

Determine multiplicity of approximate factors fi by comparing
the tolerances and degrees of the approximate GCDs:

gcd(fi,∂k f /∂xk).

– p.15

Table of Tests

Ex. deg(fi)
σr+1

σr
σr coeff. err. backward err.’s T1(s) T (s)

Nagasaka ’02 2,3 11 10−3 10−1 0.13×10−1 0.031 2.406

Sasaki ’01 5,5 109 10−8 10−12 0.11×10−8 0.656 5.156

Sasaki ’01 10,10 105 10−6 10−5 0.11×10−5 22.7 115.1

Corless etal ’01 7,8 108 10−8 10−5 0.14×10−7 5.0 24.83

Corless etal ’02 3,3,3 108 10−10 0 0.11×10−8 0.312 9.422

Random 6,6,10 105 10−8 10−5 0.62×10−6 40.83 558.3

" 15,7,2 371 10−4 10−2 0.33×10−3 67.17 2801

" 4,4,4,4,4 106 10−7 10−5 0.50×10−7 23.98 978.4

" 3,3,3 16 10−3 10−1 0.156 0.359 41.97

" 8,8 173 10−3 10−2 0.65×10−3 7.266 66.56

" 12,7,5 529 10−5 10−2 0.20×10−3 66.69 1461

" 12,7,5 53 10−4 10−1 0.28×10−2 66.75 1534

" 8,8 9 10−2 10−1 0.14×10−1 7.157 153.9

" 18,18 106 10−8 10−6 0.64×10−6 725.2 4979

– p.16

Fin

– p.17

	Approximate Factorization Problem [Kaltofen '94]
	State of the Approximate Factorization
	Wolfgang M. Ruppert's Theorem
	Gao's Factorizer based on Ruppert's Theorem
	Gao's Factorizer based on Ruppert's Theorem
	Adapting to the Approximate Case
	The Generalized Sylvester Matrix
	Determining the Degree of the GCD
	Computing the Exact GCD
	Computing the Approximate GCD
	Determining the Number of Approximate Factors
	The Matrix A_g
	Approximate Factorization
	Notes on the non-Square-free Case
	Table of Tests
	Fin

