Dagstuhl 2004

Approximate Factorization of Multivariate Polynomials via Differential Equations

Erich Kaltofen

North Carolina State University

Webpage: Google→kaltofen

Joint work with Shuhong Gao, John May, Zhengfeng Yang, and Lihong Zhi

Approximate Factorization Problem [Kaltofen '94]

Given $f \in \mathbb{C}[x, y]$, irreducible, find $\tilde{f} \in \mathbb{C}[x, y]$ so that $\deg \tilde{f} \leq \deg f$, \tilde{f} factors, and $||f - \tilde{f}||$ is minimal.

Approximate Factorization Problem [Kaltofen '94] Given $f \in \mathbb{C}[x, y]$, irreducible, find $\tilde{f} \in \mathbb{C}[x, y]$ so that $\deg \tilde{f} \leq \deg f$, \tilde{f} factors, and $||f - \tilde{f}||$ is minimal.

Problem depends on choice of norm $\|\cdot\|$, and degree:

For $f = x^2 + y^2 - 1$, the 2-norm, and total degree:

 $\tilde{f} = (x-1)(x+1), ||f - \tilde{f}||_2 = 1.$

Approximate Factorization Problem [Kaltofen '94] Given $f \in \mathbb{C}[x, y]$, irreducible, find $\tilde{f} \in \mathbb{C}[x, y]$ so that $\deg \tilde{f} \leq \deg f$, \tilde{f} factors, and $||f - \tilde{f}||$ is minimal.

Problem depends on choice of norm $\|\cdot\|$, and degree:

For rectangular degrees we get closer to $f = x^2 + y^2 - 1$:

 $\hat{f} = (0.4906834y^2 + 0.8491482x - 0.9073464)(x + 1.214778)$

 $= 0.596072 y^{2} + 0.849148 x^{2} + 0.490683 xy^{2} + 0.124180 x - 1.102225,$ $\|f - \hat{f}\|_{2} \approx 0.6727223.$

Approximate Factorization Problem [Kaltofen '94]

Given $f \in \mathbb{C}[x, y]$, irreducible, find $\tilde{f} \in \mathbb{C}[x, y]$ so that $\deg \tilde{f} \leq \deg f$, \tilde{f} factors, and $||f - \tilde{f}||$ is minimal.

Degree bound is important:

 $(1 + \delta x)f$ is reducible but for $\delta < \varepsilon / ||f||$, $||(1 + \delta x)f - f|| = ||\delta x f|| = \delta ||f|| < \varepsilon$

 There are currently no polynomial time algorithms to find the closest polynomial which factors.
Best today: Constant degree factors [Hitz, Kaltofen, Lakshman ISSAC '99]

- There are currently no polynomial time algorithms to find the closest polynomial which factors.
 Best today: Constant degree factors [Hitz, Kaltofen, Lakshman ISSAC '99]
- There are several algorithms and heuristics to find factorizable polynomials that are close to "nearly factorizable" polynomials.

- There are currently no polynomial time algorithms to find the closest polynomial which factors.
 Best today: Constant degree factors [Hitz, Kaltofen, Lakshman ISSAC '99]
- There are several algorithms and heuristics to find factorizable polynomials that are close to "nearly factorizable" polynomials.
- There is a method for finding lower bounds on the distance to the nearest polynomial which factors [Kaltofen and May ISSAC 2003].

- There are currently no polynomial time algorithms to find the closest polynomial which factors.
 Best today: Constant degree factors [Hitz, Kaltofen, Lakshman ISSAC '99]
- There are several algorithms and heuristics to find factorizable polynomials that are close to "nearly factorizable" polynomials.
- There is a method for finding lower bounds on the distance to the nearest polynomial which factors [Kaltofen and May ISSAC 2003].
- Improved lower bounds together with improved approximate factorizers may yield the nearest polynomial which factors similarly to TSP problems.

Wolfgang M. Ruppert's Theorem $f \in \mathbb{K}[x, y], \deg f = (\deg_x f, \deg_y f) = (m, n).$ \mathbb{K} is a field, algebraically closed, and characteristic 0. Theorem. *f* is reducible $\iff \exists g, h \in \mathbb{K}[x, y]$, non-zero,

$$\frac{\partial}{\partial y}\frac{g}{f} - \frac{\partial}{\partial x}\frac{h}{f} = 0$$

 $\deg g \le (m-2, n), \deg h \le (m, n-1).$

Wolfgang M. Ruppert's Theorem $f \in \mathbb{K}[x,y], \deg f = (\deg_x f, \deg_y f) = (m,n).$ \mathbb{K} is a field, algebraically closed, and characteristic 0. Theorem. *f* is reducible $\iff \exists g, h \in \mathbb{K}[x,y]$, non-zero,

$$\frac{\partial}{\partial y}\frac{g}{f} - \frac{\partial}{\partial x}\frac{h}{f} = 0$$

$$\deg g \le (m-2, n), \deg h \le (m, n-1).$$

Bounds on the degrees of g and h eliminate the solution

$$g = \frac{\partial f}{\partial x}, \ h = \frac{\partial f}{\partial y}.$$

Wolfgang M. Ruppert's Theorem $f \in \mathbb{K}[x, y], \deg f = (\deg_x f, \deg_y f) = (m, n).$ \mathbb{K} is a field, algebraically closed, and characteristic 0. Theorem. *f* is reducible $\iff \exists g, h \in \mathbb{K}[x, y]$, non-zero,

$$f\frac{\partial g}{\partial y} - g\frac{\partial f}{\partial y} + h\frac{\partial f}{\partial x} - f\frac{\partial h}{\partial x} = 0$$

 $\deg g \le (m-2,n), \deg h \le (m,n-1).$

The PDE leads to a set of equations linear in the coefficients of g and h.

Gao's Factorizer based on Ruppert's Theorem

Change the degree bound: $\deg g \le (m - 1, n)$ # linearly indep. solutions to the PDE = # factors of fRequire square-freeness: $GCD(f, \frac{\partial f}{\partial x}) = 1$

Gao's Factorizer based on Ruppert's Theorem

Change the degree bound: $\deg g \le (m - 1, n)$ # linearly indep. solutions to the PDE = # factors of fRequire square-freeness: $GCD(f, \frac{\partial f}{\partial x}) = 1$ If $f = f_1 \cdots f_r$, then let

$$E_i = \frac{f}{f_i} \frac{\partial f_i}{\partial x} \in \mathbb{C}[x, y]$$

and

 $G = \operatorname{Span}_{\mathbb{C}} \{ g \mid [g,h] \text{ is a solution to the PDE} \} \}.$

Any solution $g \in G$ satisfies $g = \sum_{i=1}^{r} \lambda_i E_i$. If the λ_i 's are distinct then

$$f_i = \gcd(f, g - \lambda_i f_x).$$

Gao's Factorizer based on Ruppert's Theorem

Algorithm

- 1. Find a basis for the linear space G, and choose a random element $g \in G$.
- 2. Compute the $r \times r$ matrix A_g using g and the basis of G.
- 3. Factor CharPoly(A_g) = $\prod_i \phi_i$ over \mathbb{Q} . $\mathbb{Q}[z]/\phi_i(z)$ are the extensions in which the factors lie.
- 4. Compute (the equivalence class of) a factor $f_i = \gcd(f, g \alpha_i f_x)$ with $\alpha_i \equiv z \in \mathbb{Q}[z]/\phi_i(z)$.

Adapting to the Approximate Case

The following problems must be solved in order to create an approximate factorizer from Gao's algorithm:

- 1. Computing approximate GCDs of bivariate polynomials;
- 2. Determining the numerical dimension of the solution space of the PDE, and computing approximate solutions to the PDE;
- 3. Computing a matrix A_g which has no clusters of eigenvalues.

The Generalized Sylvester Matrix

A pair $g, h \in \mathbb{K}[x, y]$ has a GCD of degree at least k iff there are non-zero solutions $u, v \in \mathbb{K}[x, y]$ to:

ug + vh = 0, $\deg u \leq \deg(h) - k$, $\deg v \leq \deg(g) - k$.

This system is linear in the coefficients of u and v. The matrix of this system, $Syl_k(g,h)$ is the bivariate generalization of the Sylvester matrix of g and h when k = 1.

Determining the Degree of the GCD

In exact arithmetic: the degree of gcd(g,h) can be easily determined from the rank deficiency of $Syl_1(g,h)$.

Numerically, rank deficiency is determined by the singular values σ_i of $\text{Syl}_1(g,h) = U\Sigma V$.

Syl₁(*g*,*h*) is exactly rank *p* if $\sigma_1 \ge \cdots \ge \sigma_p > 0$ and $\sigma_{p+1} = \cdots = \sigma_m = 0$.

Determining the Degree of the GCD

In exact arithmetic: the degree of gcd(g,h) can be easily determined from the rank deficiency of $Syl_1(g,h)$.

Numerically, rank deficiency is determined by the singular values σ_i of $\text{Syl}_1(g,h) = U\Sigma V$.

Syl₁(*g*,*h*) is exactly rank *p* if $\sigma_1 \ge \cdots \ge \sigma_p > 0$ and $\sigma_{p+1} = \cdots = \sigma_m = 0$.

We call $Syl_1(g,h)$ numerical rank *p* if for a chosen tolerance ε :

 $\sigma_1 \geq \cdots \geq \sigma_p > \varepsilon \geq \sigma_{p+1} \geq \cdots \geq \sigma_m.$

If ε is not given, we will find an ε from the largest gap. That is $\varepsilon = \sigma_{p+1}$ so that σ_p / σ_{p+1} is maximal.

Computing the Exact GCD

Let $k \leq \deg(\gcd(g,h))$, then the smallest degree solution to

ug + vh = 0, $\deg u \leq \deg(h) - k$, $\deg v \leq \deg(g) - k$

is $u = h_1 = h/\gcd(g,h), v = g_1 = -g/\gcd(g,h).$

Computing the Exact GCD

Let $k \leq \deg(\gcd(g,h))$, then the smallest degree solution to

ug + vh = 0, $\deg u \le \deg(h) - k$, $\deg v \le \deg(g) - k$

is $u = h_1 = h/\gcd(g,h), v = g_1 = -g/\gcd(g,h).$

We can determine $k = \deg(\gcd(g,h))$ from the rank of $\operatorname{Syl}_1(g,h)$. For that k,

Nullspace(Syl_k(g,h)) = Span_K{[h_1 , g_1]}.

Computing the Exact GCD

Let $k \leq \deg(\gcd(g,h))$, then the smallest degree solution to

ug + vh = 0, $\deg u \le \deg(h) - k$, $\deg v \le \deg(g) - k$

is $u = h_1 = h/\gcd(g,h), v = g_1 = -g/\gcd(g,h).$

We can determine $k = \deg(\gcd(g,h))$ from the rank of $\operatorname{Syl}_1(g,h)$. For that k,

Nullspace(Syl_k(g,h)) = Span_K{[h_1 , g_1]}.

The GCD, *d*, is found by: 1. solving for null-vector $[h_1, g_1]$ of $Syl_k(g, h)$ 2. dividing: $d = h/h_1 = g/g_1$.

Computing the Approximate GCD

Input: *g* and *h* relatively prime **Output**: $d \notin \mathbb{C}$ approx. GCD of *g* and *h*, and $\varepsilon > 0$ tolerance

- 1. Form $\operatorname{Syl}_1(g,h)$
- 2. Determine *k*, the degree of the approximate GCD of *g* and *h* by finding the largest gap in the singular values of *S* and inferring the degree from the numerical rank
- 3. Set $\varepsilon = \sigma_{p+1}$
- 4. Form $Syl_k(g,h)$ [has approximate rank 1]
- 5. Singular vector corresponding the smallest singular value of $Syl_k(g,h)$ is the approximate null-vector [u, v] [can compute with an iterative method]
- 6. Find a *d* that minimizes $||h du||_2^2 + ||g + dv||_2^2$, using least squares [Approximate Division]

Determining the Number of Approximate Factors Denote the matrix from Gao's algorithm $\operatorname{Rup}(f)$. Recall

of factors of f = Dim(Nullspace(Rup(f))).

If f is irreducible, find the number of approximate factors with the approximate rank of $\operatorname{Rup}(f)$.

Determining the Number of Approximate Factors Denote the matrix from Gao's algorithm $\operatorname{Rup}(f)$. Recall

of factors of f = Dim(Nullspace(Rup(f))).

If f is irreducible, find the number of approximate factors with the approximate rank of $\operatorname{Rup}(f)$.

Like approximate GCD, approximate rank of $\operatorname{Rup}(f)$ is determined by the largest gap in the singular values. Recall:

 $G = \operatorname{Span}_{\mathbb{C}} \{ g \mid [g,h] \in \operatorname{Nullspace}(\operatorname{Rup}(f)) \}.$

An approximate basis for *G* can be found from the singular vectors corresponding to the smallest singular values of $\operatorname{Rup}(f)$.

Determining the Number of Approximate Factors Denote the matrix from Gao's algorithm $\operatorname{Rup}(f)$. Recall

of factors of f = Dim(Nullspace(Rup(f))).

If f is irreducible, find the number of approximate factors with the approximate rank of $\operatorname{Rup}(f)$.

Note:

 $\operatorname{Rup}(f)$ always has at least one null-vector, $[f_x, f_y]$, so $r \ge 1$. Since we are looking for approximate factors we will choose the largest gap with r > 1.

The Matrix A_g

Let $\{g_i\}_{i=1}^r$ be a basis for *G*. Let $g = \sum s_i g_i$ where $s_i \in S \subset \mathbb{C}$ are chosen randomly, and independently.

 $A_g = [a_{i,j}]$ is the unique $r \times r$ matrix such that

 $gg_i \equiv a_{i,j}g_j f_x \pmod{f}$ in $\mathbb{C}(y)[x]$.

The Matrix A_g

Let $\{g_i\}_{i=1}^r$ be a basis for *G*. Let $g = \sum s_i g_i$ where $s_i \in S \subset \mathbb{C}$ are chosen randomly, and independently.

 $A_g = [a_{i,j}]$ is the unique $r \times r$ matrix such that

 $gg_i \equiv a_{i,j}g_j f_x \pmod{f}$ in $\mathbb{C}(y)[x]$.

Then:

$$f = \prod_{\lambda \in \text{Eigenvalues}(A_g)} \gcd(f, g - \lambda f)$$

is a complete factorization of f over \mathbb{C} with probability at least 1 - r(r-1)/(2|S|).

Approximate Factorization

Input: $f \in \mathbb{Q}[x, y]$ absolutely irreducible, approximately square-free **Output**: f_1, \ldots, f_r approximate factors of f

- 1. Compute the SVD of $\operatorname{Rup}(f)$, and determine *r*, its rank deficiency.
- 2. Set g_1, \ldots, g_r equal to the last *r* singular vectors of $\operatorname{Rup}(f)$.
- 3. Choose $s_i \in S \subset \mathbb{C}$ randomly and independently, set $g = \sum s_i g_i$
- 4. Compute A_g , and $\lambda_1, \ldots, \lambda_r$ its eigenvalues. If any $|\lambda_i - \lambda_j|$ is too small compute a new random *g*.
- 5. For each λ_i compute the approximate GCD $f_i = \gcd(f, g \lambda_i f)$.

Notes on the non-Square-free Case

Let δ be the *r*th smallest singular value of $\operatorname{Rup}(f)$. Let ε be the tolerance of $\operatorname{gcd}(f, f_x)$. If $\varepsilon \leq \delta$, *f* is not approximately square-free.

One way to handle the non-square-free case: Compute the approximate quotient \overline{f} of f and f_x and factor the approximately square-free kernel \overline{f} .

Determine multiplicity of approximate factors f_i by comparing the tolerances and degrees of the approximate GCDs:

 $gcd(f_i,\partial^k f/\partial x^k).$

Table of Tests

Ex.	$\deg(f_i)$	$\frac{\sigma_{r+1}}{\sigma_r}$	σ _r	coeff. err.	backward err.'s	<i>T</i> ₁ (s)	T (s)
Nagasaka '02	2,3	11	10^{-3}	10^{-1}	$0.13 imes 10^{-1}$	0.031	2.406
Sasaki '01	5,5	10 ⁹	10^{-8}	10^{-12}	$0.11 imes 10^{-8}$	0.656	5.156
Sasaki '01	10,10	10 ⁵	10^{-6}	10^{-5}	$0.11 imes 10^{-5}$	22.7	115.1
Corless etal '01	7,8	10 ⁸	10^{-8}	10^{-5}	$0.14 imes 10^{-7}$	5.0	24.83
Corless etal '02	3,3,3	10 ⁸	10^{-10}	0	$0.11 imes 10^{-8}$	0.312	9.422
Random	6,6,10	10 ⁵	10^{-8}	10^{-5}	$0.62 imes 10^{-6}$	40.83	558.3
"	15,7,2	371	10^{-4}	10^{-2}	0.33×10^{-3}	67.17	2801
"	4,4,4,4,4	10 ⁶	10^{-7}	10^{-5}	$0.50 imes 10^{-7}$	23.98	978.4
"	3,3,3	16	10^{-3}	10^{-1}	0.156	0.359	41.97
"	8,8	173	10^{-3}	10^{-2}	$0.65 imes 10^{-3}$	7.266	66.56
"	12,7,5	529	10^{-5}	10^{-2}	0.20×10^{-3}	66.69	1461
"	12,7,5	53	10^{-4}	10^{-1}	$0.28 imes 10^{-2}$	66.75	1534
"	8,8	9	10^{-2}	10^{-1}	$0.14 imes 10^{-1}$	7.157	153.9
"	18,18	10 ⁶	10^{-8}	10^{-6}	$0.64 imes10^{-6}$	725.2	4979

Fin