Dagstuhl 2004
 Approximate Factorization of Multivariate Polynomials via Differential Equations
 Erich Kaltofen

North Carolina State University

Webpage: Google \rightarrow kaltofen

Joint work with Shuhong Gao, John May, Zhengfeng Yang, and Lihong Zhi

Approximate Factorization Problem [Kaltofen '94]

Given $f \in \mathbb{C}[x, y]$, irreducible, find $\tilde{f} \in \mathbb{C}[x, y]$ so that $\operatorname{deg} \tilde{f} \leq \operatorname{deg} f, \tilde{f}$ factors, and $\|f-\tilde{f}\|$ is minimal.

Approximate Factorization Problem [Kaltofen '94]
Given $f \in \mathbb{C}[x, y]$, irreducible, find $\tilde{f} \in \mathbb{C}[x, y]$ so that $\operatorname{deg} \tilde{f} \leq \operatorname{deg} f, \tilde{f}$ factors, and $\|f-\tilde{f}\|$ is minimal.

Problem depends on choice of norm $\|\cdot\|$, and degree:
For $f=x^{2}+y^{2}-1$, the 2 -norm, and total degree:

$$
\tilde{f}=(x-1)(x+1),\|f-\tilde{f}\|_{2}=1 .
$$

Approximate Factorization Problem [Kaltofen '94]

Given $f \in \mathbb{C}[x, y]$, irreducible, find $\tilde{f} \in \mathbb{C}[x, y]$ so that $\operatorname{deg} \tilde{f} \leq \operatorname{deg} f, \tilde{f}$ factors, and $\|f-\tilde{f}\|$ is minimal.

Problem depends on choice of norm $\|\cdot\|$, and degree:
For rectangular degrees we get closer to $f=x^{2}+y^{2}-1$:

$$
\begin{gathered}
\hat{f}=\left(0.4906834 y^{2}+0.8491482 x-0.9073464\right)(x+1.214778) \\
=0.596072 y^{2}+0.849148 x^{2}+0.490683 x y^{2}+0.124180 x-1.102225, \\
\|f-\hat{f}\|_{2} \approx 0.6727223
\end{gathered}
$$

Approximate Factorization Problem [Kaltofen '94]
Given $f \in \mathbb{C}[x, y]$, irreducible, find $\tilde{f} \in \mathbb{C}[x, y]$ so that $\operatorname{deg} \tilde{f} \leq \operatorname{deg} f, \tilde{f}$ factors, and $\|f-\tilde{f}\|$ is minimal.

Degree bound is important:
$(1+\delta x) f$ is reducible but for $\delta<\varepsilon /\|f\|$,

$$
\|(1+\delta x) f-f\|=\|\delta x f\|=\delta\|f\|<\varepsilon
$$

State of the Approximate Factorization

- There are currently no polynomial time algorithms to find the closest polynomial which factors. Best today: Constant degree factors [Hitz, Kaltofen, Lakshman ISSAC '99]

State of the Approximate Factorization

- There are currently no polynomial time algorithms to find the closest polynomial which factors. Best today: Constant degree factors [Hitz, Kaltofen, Lakshman ISSAC '99]
- There are several algorithms and heuristics to find factorizable polynomials that are close to "nearly factorizable" polynomials.

State of the Approximate Factorization

- There are currently no polynomial time algorithms to find the closest polynomial which factors.
Best today: Constant degree factors [Hitz, Kaltofen, Lakshman ISSAC '99]
- There are several algorithms and heuristics to find factorizable polynomials that are close to "nearly factorizable" polynomials.
- There is a method for finding lower bounds on the distance to the nearest polynomial which factors [Kaltofen and May ISSAC 2003].

State of the Approximate Factorization

- There are currently no polynomial time algorithms to find the closest polynomial which factors.
Best today: Constant degree factors [Hitz, Kaltofen, Lakshman ISSAC '99]
- There are several algorithms and heuristics to find factorizable polynomials that are close to "nearly factorizable" polynomials.
- There is a method for finding lower bounds on the distance to the nearest polynomial which factors [Kaltofen and May ISSAC 2003].
- Improved lower bounds together with improved approximate factorizers may yield the nearest polynomial which factors similarly to TSP problems.

Wolfgang M. Ruppert's Theorem

$f \in \mathbb{K}[x, y], \operatorname{deg} f=\left(\operatorname{deg}_{x} f, \operatorname{deg}_{y} f\right)=(m, n)$.
\mathbb{K} is a field, algebraically closed, and characteristic 0 .
Theorem. f is reducible $\Longleftrightarrow \exists g, h \in \mathbb{K}[x, y]$, non-zero,

$$
\begin{gathered}
\frac{\partial}{\partial y} \frac{g}{f}-\frac{\partial}{\partial x} \frac{h}{f}=0 \\
\operatorname{deg} g \leq(m-2, n), \operatorname{deg} h \leq(m, n-1)
\end{gathered}
$$

Wolfgang M. Ruppert's Theorem

$f \in \mathbb{K}[x, y], \operatorname{deg} f=\left(\operatorname{deg}_{x} f, \operatorname{deg}_{y} f\right)=(m, n)$.
\mathbb{K} is a field, algebraically closed, and characteristic 0 .
Theorem. f is reducible $\Longleftrightarrow \exists g, h \in \mathbb{K}[x, y]$, non-zero,

$$
\begin{gathered}
\frac{\partial}{\partial y} \frac{g}{f}-\frac{\partial}{\partial x} \frac{h}{f}=0 \\
\operatorname{deg} g \leq(m-2, n), \operatorname{deg} h \leq(m, n-1) .
\end{gathered}
$$

Bounds on the degrees of g and h eliminate the solution

$$
g=\frac{\partial f}{\partial x}, h=\frac{\partial f}{\partial y} .
$$

Wolfgang M. Ruppert's Theorem

$f \in \mathbb{K}[x, y], \operatorname{deg} f=\left(\operatorname{deg}_{x} f, \operatorname{deg}_{y} f\right)=(m, n)$.
\mathbb{K} is a field, algebraically closed, and characteristic 0 .
Theorem. f is reducible $\Longleftrightarrow \exists g, h \in \mathbb{K}[x, y]$, non-zero,

$$
\begin{gathered}
f \frac{\partial g}{\partial y}-g \frac{\partial f}{\partial y}+h \frac{\partial f}{\partial x}-f \frac{\partial h}{\partial x}=0 \\
\operatorname{deg} g \leq(m-2, n), \operatorname{deg} h \leq(m, n-1) .
\end{gathered}
$$

The PDE leads to a set of equations linear in the coefficients of g and h.

Gao's Factorizer based on Ruppert's Theorem

Change the degree bound: $\operatorname{deg} g \leq(m-1, n)$ \# linearly indep. solutions to the $\mathrm{PDE}=$ \# factors of f
Require square-freeness: $\operatorname{GCD}\left(f, \frac{\partial f}{\partial x}\right)=1$

Gao's Factorizer based on Ruppert's Theorem

Change the degree bound: $\operatorname{deg} g \leq(m-1, n)$ \# linearly indep. solutions to the $\mathrm{PDE}=$ \# factors of f
Require square-freeness: $\operatorname{GCD}\left(f, \frac{\partial f}{\partial x}\right)=1$
If $f=f_{1} \cdots f_{r}$, then let

$$
E_{i}=\frac{f}{f_{i}} \frac{\partial f_{i}}{\partial x} \in \mathbb{C}[x, y]
$$

and

$$
\left.G=\operatorname{Span}_{\mathbb{C}}\{g \mid[g, h] \text { is a solution to the PDE })\right\} .
$$

Any solution $g \in G$ satisfies $g=\sum_{i}^{r} \lambda_{i} E_{i}$. If the λ_{i} 's are distinct then

$$
f_{i}=\operatorname{gcd}\left(f, g-\lambda_{i} f_{x}\right) .
$$

Gao's Factorizer based on Ruppert's Theorem

Algorithm

1. Find a basis for the linear space G, and choose a random element $g \in G$.
2. Compute the $r \times r$ matrix A_{g} using g and the basis of G.
3. Factor CharPoly $\left(A_{g}\right)=\prod_{i} \phi_{i}$ over \mathbb{Q}.
$\mathbb{Q}[z] / \phi_{i}(z)$ are the extensions in which the factors lie.
4. Compute (the equivalence class of) a factor $f_{i}=\operatorname{gcd}\left(f, g-\alpha_{i} f_{x}\right)$ with $\alpha_{i} \equiv z \in \mathbb{Q}[z] / \phi_{i}(z)$.

Adapting to the Approximate Case

The following problems must be solved in order to create an approximate factorizer from Gao's algorithm:

1. Computing approximate GCDs of bivariate polynomials;
2. Determining the numerical dimension of the solution space of the PDE, and computing approximate solutions to the PDE;
3. Computing a matrix A_{g} which has no clusters of eigenvalues.

The Generalized Sylvester Matrix

A pair $g, h \in \mathbb{K}[x, y]$ has a GCD of degree at least k iff there are non-zero solutions $u, v \in \mathbb{K}[x, y]$ to:

$$
u g+v h=0, \operatorname{deg} u \leq \operatorname{deg}(h)-k, \operatorname{deg} v \leq \operatorname{deg}(g)-k
$$

This system is linear in the coefficients of u and v. The matrix of this system, $\operatorname{Syl}_{k}(g, h)$ is the bivariate generalization of the Sylvester matrix of g and h when $k=1$.

Determining the Degree of the GCD

In exact arithmetic: the degree of $\operatorname{gcd}(g, h)$ can be easily determined from the rank deficiency of $\operatorname{Syl}_{1}(g, h)$.

Numerically, rank deficiency is determined by the singular values σ_{i} of $\operatorname{Syl}_{1}(g, h)=U \Sigma V$.
$\operatorname{Syl}_{1}(g, h)$ is exactly rank p if $\sigma_{1} \geq \cdots \geq \sigma_{p}>0$ and $\sigma_{p+1}=\cdots=\sigma_{m}=0$.

Determining the Degree of the GCD

In exact arithmetic: the degree of $\operatorname{gcd}(g, h)$ can be easily determined from the rank deficiency of $\operatorname{Syl}_{1}(g, h)$.

Numerically, rank deficiency is determined by the singular values σ_{i} of $\operatorname{Syl}_{1}(g, h)=U \Sigma V$.
$\operatorname{Syl}_{1}(g, h)$ is exactly rank p if $\sigma_{1} \geq \cdots \geq \sigma_{p}>0$ and $\sigma_{p+1}=\cdots=\sigma_{m}=0$.

We call $\operatorname{Syl}_{1}(g, h)$ numerical rank p if for a chosen tolerance ε :

$$
\sigma_{1} \geq \cdots \geq \sigma_{p}>\varepsilon \geq \sigma_{p+1} \geq \cdots \geq \sigma_{m} .
$$

If ε is not given, we will find an ε from the largest gap. That is $\varepsilon=\sigma_{p+1}$ so that $\sigma_{p} / \sigma_{p+1}$ is maximal.

Computing the Exact GCD

Let $k \leq \operatorname{deg}(\operatorname{gcd}(g, h))$, then the smallest degree solution to

$$
u g+v h=0, \operatorname{deg} u \leq \operatorname{deg}(h)-k, \operatorname{deg} v \leq \operatorname{deg}(g)-k
$$

is $u=h_{1}=h / \operatorname{gcd}(g, h), v=g_{1}=-g / \operatorname{gcd}(g, h)$.

Computing the Exact GCD

Let $k \leq \operatorname{deg}(\operatorname{gcd}(g, h))$, then the smallest degree solution to

$$
u g+v h=0, \operatorname{deg} u \leq \operatorname{deg}(h)-k, \operatorname{deg} v \leq \operatorname{deg}(g)-k
$$

is $u=h_{1}=h / \operatorname{gcd}(g, h), v=g_{1}=-g / \operatorname{gcd}(g, h)$.
We can determine $k=\operatorname{deg}(\operatorname{gcd}(g, h))$ from the rank of $\operatorname{Syl}_{1}(g, h)$. For that k,
$\operatorname{Nullspace}\left(\operatorname{Syl}_{k}(g, h)\right)=\operatorname{Span}_{\mathbb{K}}\left\{\left[h_{1}, g_{1}\right]\right\}$.

Computing the Exact GCD

Let $k \leq \operatorname{deg}(\operatorname{gcd}(g, h))$, then the smallest degree solution to

$$
u g+v h=0, \operatorname{deg} u \leq \operatorname{deg}(h)-k, \operatorname{deg} v \leq \operatorname{deg}(g)-k
$$

is $u=h_{1}=h / \operatorname{gcd}(g, h), v=g_{1}=-g / \operatorname{gcd}(g, h)$.
We can determine $k=\operatorname{deg}(\operatorname{gcd}(g, h))$ from the rank of $\operatorname{Syl}_{1}(g, h)$.
For that k,

$$
\operatorname{Nullspace}\left(\operatorname{Syl}_{k}(g, h)\right)=\operatorname{Span}_{\mathbb{K}}\left\{\left[h_{1}, g_{1}\right]\right\} .
$$

The GCD, d, is found by:

1. solving for null-vector $\left[h_{1}, g_{1}\right]$ of $\operatorname{Syl}_{k}(g, h)$
2. dividing: $d=h / h_{1}=g / g_{1}$.

Computing the Approximate GCD

Input: g and h relatively prime
Output: $d \notin \mathbb{C}$ approx. GCD of g and h, and $\varepsilon>0$ tolerance

1. Form $\operatorname{Syl}_{1}(g, h)$
2. Determine k, the degree of the approximate GCD of g and h by finding the largest gap in the singular values of S and inferring the degree from the numerical rank
3. Set $\varepsilon=\sigma_{p+1}$
4. Form $\operatorname{Syl}_{k}(g, h)$ [has approximate rank 1]
5. Singular vector corresponding the smallest singular value of $\operatorname{Syl}_{k}(g, h)$ is the approximate null-vector $[u, v]$ [can compute with an iterative method]
6. Find a d that minimizes $\|h-d u\|_{2}^{2}+\|g+d \nu\|_{2}^{2}$, using least squares [Approximate Division]

Determining the Number of Approximate Factors
Denote the matrix from Gao's algorithm $\operatorname{Rup}(f)$. Recall

$$
\# \text { of factors of } f=\operatorname{Dim}(\operatorname{Nullspace}(\operatorname{Rup}(f))) \text {. }
$$

If f is irreducible, find the number of approximate factors with the approximate rank of $\operatorname{Rup}(f)$.

Determining the Number of Approximate Factors
Denote the matrix from Gao's algorithm $\operatorname{Rup}(f)$. Recall

$$
\text { \# of factors of } f=\operatorname{Dim}(\operatorname{Nullspace}(\operatorname{Rup}(f))) \text {. }
$$

If f is irreducible, find the number of approximate factors with the approximate rank of $\operatorname{Rup}(f)$.

Like approximate GCD, approximate rank of $\operatorname{Rup}(f)$ is determined by the largest gap in the singular values. Recall:

$$
G=\operatorname{Span}_{\mathbb{C}}\{g \mid[g, h] \in \operatorname{Nullspace}(\operatorname{Rup}(f))\} .
$$

An approximate basis for G can be found from the singular vectors corresponding to the smallest singular values of $\operatorname{Rup}(f)$.

Determining the Number of Approximate Factors
Denote the matrix from Gao's algorithm $\operatorname{Rup}(f)$. Recall

$$
\text { \# of factors of } f=\operatorname{Dim}(\operatorname{Nullspace}(\operatorname{Rup}(f))) \text {. }
$$

If f is irreducible, find the number of approximate factors with the approximate rank of $\operatorname{Rup}(f)$.

Note:
$\operatorname{Rup}(f)$ always has at least one null-vector, $\left[f_{x}, f_{y}\right]$, so $r \geq 1$. Since we are looking for approximate factors we will choose the largest gap with $r>1$.

The Matrix A_{g}

Let $\left\{g_{i}\right\}_{i=1}^{r}$ be a basis for G.
Let $g=\sum s_{i} g_{i}$ where $s_{i} \in S \subset \mathbb{C}$ are chosen randomly, and independently.
$A_{g}=\left[a_{i, j}\right]$ is the unique $r \times r$ matrix such that

$$
g g_{i} \equiv a_{i, j} g_{j} f_{x}(\bmod f) \text { in } \mathbb{C}(y)[x] .
$$

The Matrix A_{g}

Let $\left\{g_{i}\right\}_{i=1}^{r}$ be a basis for G.
Let $g=\sum s_{i} g_{i}$ where $s_{i} \in S \subset \mathbb{C}$ are chosen randomly, and independently.
$A_{g}=\left[a_{i, j}\right]$ is the unique $r \times r$ matrix such that

$$
g g_{i} \equiv a_{i, j} g_{j} f_{x}(\bmod f) \text { in } \mathbb{C}(y)[x] .
$$

Then:

$$
f=\prod_{\lambda \in \operatorname{Eigenvalues}\left(A_{g}\right)} \operatorname{gcd}(f, g-\lambda f)
$$

is a complete factorization of f over \mathbb{C} with probability at least $1-r(r-1) /(2|S|)$.

Approximate Factorization

Input: $f \in \mathbb{Q}[x, y]$ absolutely irreducible, approximately square-free
Output: f_{1}, \ldots, f_{r} approximate factors of f

1. Compute the SVD of $\operatorname{Rup}(f)$, and determine r, its rank deficiency.
2. Set g_{1}, \ldots, g_{r} equal to the last r singular vectors of $\operatorname{Rup}(f)$.
3. Choose $s_{i} \in S \subset \mathbb{C}$ randomly and independently, set $g=\sum s_{i} g_{i}$
4. Compute A_{g}, and $\lambda_{1}, \ldots, \lambda_{r}$ its eigenvalues. If any $\left|\lambda_{i}-\lambda_{j}\right|$ is too small compute a new random g.
5. For each λ_{i} compute the approximate GCD $f_{i}=\operatorname{gcd}\left(f, g-\lambda_{i} f\right)$.

Notes on the non-Square-free Case

Let δ be the $r^{\text {th }}$ smallest singular value of $\operatorname{Rup}(f)$.
Let ε be the tolerance of $\operatorname{gcd}\left(f, f_{x}\right)$.
If $\varepsilon \leq \delta, f$ is not approximately square-free.
One way to handle the non-square-free case:
Compute the approximate quotient \bar{f} of f and f_{x} and factor the approximately square-free kernel \bar{f}.

Determine multiplicity of approximate factors f_{i} by comparing the tolerances and degrees of the approximate GCDs:

$$
\operatorname{gcd}\left(f_{i}, \partial^{k} f / \partial x^{k}\right)
$$

Table of Tests

Ex.	$\operatorname{deg}\left(f_{i}\right)$	$\frac{\sigma_{r+1}}{\sigma_{r}}$	σ_{r}	coeff. err.	backward err.'s	$T_{1}(\mathrm{~s})$	$T(\mathrm{~s})$
Nagasaka '02	2,3	11	10^{-3}	10^{-1}	0.13×10^{-1}	0.031	2.406
Sasaki '01	5,5	10^{9}	10^{-8}	10^{-12}	0.11×10^{-8}	0.656	5.156
Sasaki '01	10,10	10^{5}	10^{-6}	10^{-5}	0.11×10^{-5}	22.7	115.1
Corless etal '01	7,8	10^{8}	10^{-8}	10^{-5}	0.14×10^{-7}	5.0	24.83
Corless etal '02	$3,3,3$	10^{8}	10^{-10}	0	0.11×10^{-8}	0.312	9.422
Random	$6,6,10$	10^{5}	10^{-8}	10^{-5}	0.62×10^{-6}	40.83	558.3
$"$	$15,7,2$	371	10^{-4}	10^{-2}	0.33×10^{-3}	67.17	2801
$" \prime$	$4,4,4,4,4$	10^{6}	10^{-7}	10^{-5}	0.50×10^{-7}	23.98	978.4
$"$	$3,3,3$	16	10^{-3}	10^{-1}	0.156	0.359	41.97
$"$	8,8	173	10^{-3}	10^{-2}	0.65×10^{-3}	7.266	66.56
$"$	$12,7,5$	529	10^{-5}	10^{-2}	0.20×10^{-3}	66.69	1461
$"$	$12,7,5$	53	10^{-4}	10^{-1}	0.28×10^{-2}	66.75	1534
$"$	8,8	9	10^{-2}	10^{-1}	0.14×10^{-1}	7.157	153.9
$"$	18,18	10^{6}	10^{-8}	10^{-6}	0.64×10^{-6}	725.2	4979

Fin

