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Approximate Factorization Problem [Kaltofen ’94]

Given f ∈ C[x,y], irreducible, find f̃ ∈ C[x,y] so that
deg f̃ ≤ deg f , f̃ factors, and ‖ f − f̃‖ is minimal.

Degree bound is important:

(1+δx) f is reducible but for δ < ε/‖ f‖,

‖(1+δx) f − f‖ = ‖δx f‖ = δ‖ f‖ < ε
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Problem depends on choice of norm ‖ · ‖, and degree:

For rectangular degrees we get closer to f = x2 + y2 −1:

f̂ = (0.4906834y2 +0.8491482x−0.9073464)(x+1.214778)

= 0.596072y2+0.849148x2+0.490683xy2+0.124180x−1.102225,
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State of the Approximate Factorization
• There are currently no polynomial time algorithms to find

the closest polynomial which factors.
Best today: Constant degree factors [Hitz, Kaltofen,
Lakshman ISSAC ’99]

• There are several algorithms and heuristics to find
factorizable polynomials that are close to “nearly
factorizable” polynomials.

• There is a method for finding lower bounds on the distance
to the nearest polynomial which factors [Kaltofen and May
ISSAC 2003].

• Improved lower bounds together with improved
approximate factorizers may yield the nearest polynomial
which factors similarly to TSP problems.
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Wolfgang M. Ruppert’s Theorem

f ∈ K[x,y], deg f = (degx f ,degy f ) = (m,n).

K is a field, algebraically closed, and characteristic 0.

Theorem. f is reducible ⇐⇒ ∃g,h ∈ K[x,y], non-zero,

∂
∂y

g
f
−

∂
∂x

h
f

= 0

degg ≤ (m−2,n) , degh ≤ (m,n−1).

The PDE leads to a set of equations linear in the coefficients of g
and h.

– p.4



Wolfgang M. Ruppert’s Theorem

f ∈ K[x,y], deg f = (degx f ,degy f ) = (m,n).

K is a field, algebraically closed, and characteristic 0.

Theorem. f is reducible ⇐⇒ ∃g,h ∈ K[x,y], non-zero,

∂
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degg ≤ (m−2,n) , degh ≤ (m,n−1).

Bounds on the degrees of g and h eliminate the solution

g =
∂ f
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, h =
∂ f
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Gao’s Factorizer based on Ruppert’s Theorem

Change the degree bound: degg ≤ (m−1,n)
# linearly indep. solutions to the PDE = # factors of f

Require square-freeness: GCD( f , ∂ f
∂x ) = 1

If f = f1 · · · fr, then let

Ei =
f
fi

∂ fi

∂x
∈ C[x,y]

and
G = SpanC{g | [g,h] is a solution to the PDE)}.

Any solution g ∈ G satisfies g = ∑r
i λiEi. If the λi’s are distinct

then
fi = gcd( f ,g−λi fx).
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Gao’s Factorizer based on Ruppert’s Theorem

Algorithm

1. Find a basis for the linear space G, and choose a random
element g ∈ G.

2. Compute the r× r matrix Ag using g and the basis of G.

3. Factor CharPoly(Ag) = ∏i φi over Q.

Q[z]/φi(z) are the extensions in which the factors lie.

4. Compute (the equivalence class of) a factor
fi = gcd( f ,g−αi fx) with αi ≡ z ∈ Q[z]/φi(z).
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Adapting to the Approximate Case

The following problems must be solved in order to create an
approximate factorizer from Gao’s algorithm:

1. Computing approximate GCDs of bivariate polynomials;

2. Determining the numerical dimension of the solution space
of the PDE, and computing approximate solutions to the
PDE;

3. Computing a matrix Ag which has no clusters of
eigenvalues.
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The Generalized Sylvester Matrix

A pair g,h ∈ K[x,y] has a GCD of degree at least k iff there are
non-zero solutions u,v ∈ K[x,y] to:

ug+ vh = 0, degu ≤ deg(h)− k, degv ≤ deg(g)− k.

This system is linear in the coefficients of u and v.
The matrix of this system, Sylk(g,h) is the bivariate
generalization of the Sylvester matrix of g and h when k = 1.
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Determining the Degree of the GCD

In exact arithmetic: the degree of gcd(g,h) can be easily
determined from the rank deficiency of Syl1(g,h).

Numerically, rank deficiency is determined by the singular
values σi of Syl1(g,h) = UΣV.

Syl1(g,h) is exactly rank p if σ1 ≥ ·· · ≥ σp > 0 and
σp+1 = · · · = σm = 0.

We call Syl1(g,h) numerical rank p if for a chosen tolerance ε :

σ1 ≥ ·· · ≥ σp > ε ≥ σp+1 ≥ ·· · ≥ σm.

If ε is not given, we will find an ε from the largest gap. That is
ε = σp+1 so that σp/σp+1 is maximal.
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Computing the Exact GCD

Let k ≤ deg(gcd(g,h)), then the smallest degree solution to

ug+ vh = 0, degu ≤ deg(h)− k, degv ≤ deg(g)− k

is u = h1 = h/gcd(g,h), v = g1 = −g/gcd(g,h).

We can determine k = deg(gcd(g,h)) from the rank of Syl1(g,h).
For that k,

Nullspace(Sylk(g,h)) = SpanK{[h1,g1]}.

The GCD, d, is found by:
1. solving for null-vector [h1,g1] of Sylk(g,h)
2. dividing: d = h/h1 = g/g1.
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Computing the Approximate GCD
Input: g and h relatively prime
Output: d 6∈ C approx. GCD of g and h, and ε > 0 tolerance

1. Form Syl1(g,h)

2. Determine k, the degree of the approximate GCD of g and h
by finding the largest gap in the singular values of S and
inferring the degree from the numerical rank

3. Set ε = σp+1

4. Form Sylk(g,h) [has approximate rank 1]

5. Singular vector corresponding the smallest singular value
of Sylk(g,h) is the approximate null-vector [u,v]
[can compute with an iterative method]

6. Find a d that minimizes ‖h−d u‖2
2 +‖g+d v‖2

2, using least
squares [Approximate Division]
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Determining the Number of Approximate Factors

Denote the matrix from Gao’s algorithm Rup( f ). Recall

# of factors of f = Dim(Nullspace(Rup( f ))).

If f is irreducible, find the number of approximate factors with
the approximate rank of Rup( f ).
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Denote the matrix from Gao’s algorithm Rup( f ). Recall

# of factors of f = Dim(Nullspace(Rup( f ))).

If f is irreducible, find the number of approximate factors with
the approximate rank of Rup( f ).

Like approximate GCD, approximate rank of Rup( f ) is
determined by the largest gap in the singular values.
Recall:

G = SpanC{g | [g,h] ∈ Nullspace(Rup( f ))}.

An approximate basis for G can be found from the singular
vectors corresponding to the smallest singular values of Rup( f ).
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Determining the Number of Approximate Factors

Denote the matrix from Gao’s algorithm Rup( f ). Recall

# of factors of f = Dim(Nullspace(Rup( f ))).

If f is irreducible, find the number of approximate factors with
the approximate rank of Rup( f ).

Note:

Rup( f ) always has at least one null-vector, [ fx, fy], so r ≥ 1. Since

we are looking for approximate factors we will choose the largest

gap with r > 1.
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The Matrix Ag

Let {gi}
r
i=1 be a basis for G.

Let g = ∑sigi where si ∈ S ⊂ C are chosen randomly, and
independently.
Ag = [ai, j] is the unique r× r matrix such that

ggi ≡ ai, j g j fx(mod f ) in C(y)[x].

Then:
f = ∏

λ∈Eigenvalues(Ag)

gcd( f ,g−λ f )

is a complete factorization of f over C with probability at least
1− r(r−1)/(2|S|).
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Approximate Factorization

Input: f ∈ Q[x,y] absolutely irreducible, approximately
square-free
Output: f1, . . . , fr approximate factors of f

1. Compute the SVD of Rup( f ), and determine r, its rank
deficiency.

2. Set g1, . . . ,gr equal to the last r singular vectors of Rup( f ).

3. Choose si ∈ S ⊂ C randomly and independently, set
g = ∑sigi

4. Compute Ag, and λ1, . . . ,λr its eigenvalues.
If any |λi −λ j| is too small compute a new random g.

5. For each λi compute the approximate GCD
fi = gcd( f ,g−λi f ).
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Notes on the non-Square-free Case

Let δ be the rth smallest singular value of Rup( f ).
Let ε be the tolerance of gcd( f , fx).
If ε ≤ δ, f is not approximately square-free.

One way to handle the non-square-free case:
Compute the approximate quotient f̄ of f and fx and factor the
approximately square-free kernel f̄ .

Determine multiplicity of approximate factors fi by comparing
the tolerances and degrees of the approximate GCDs:

gcd( fi,∂k f /∂xk).
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Table of Tests

Ex. deg( fi)
σr+1

σr
σr coeff. err. backward err.’s T1(s) T (s)

Nagasaka ’02 2,3 11 10−3 10−1 0.13×10−1 0.031 2.406

Sasaki ’01 5,5 109 10−8 10−12 0.11×10−8 0.656 5.156

Sasaki ’01 10,10 105 10−6 10−5 0.11×10−5 22.7 115.1

Corless etal ’01 7,8 108 10−8 10−5 0.14×10−7 5.0 24.83

Corless etal ’02 3,3,3 108 10−10 0 0.11×10−8 0.312 9.422

Random 6,6,10 105 10−8 10−5 0.62×10−6 40.83 558.3

" 15,7,2 371 10−4 10−2 0.33×10−3 67.17 2801

" 4,4,4,4,4 106 10−7 10−5 0.50×10−7 23.98 978.4

" 3,3,3 16 10−3 10−1 0.156 0.359 41.97

" 8,8 173 10−3 10−2 0.65×10−3 7.266 66.56

" 12,7,5 529 10−5 10−2 0.20×10−3 66.69 1461

" 12,7,5 53 10−4 10−1 0.28×10−2 66.75 1534

" 8,8 9 10−2 10−1 0.14×10−1 7.157 153.9

" 18,18 106 10−8 10−6 0.64×10−6 725.2 4979
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Fin
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