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Matrix determinant definition
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where y; j are from an arbitrary commutative ring,
and S, is the set of all permutationson {1,2,....n}.

Interesting rings: Z, K|xa, ..., %], K[X] /(X"



An important algebraic reduction

Theorem [Giesbrecht 1992] Suppose you have a Monte Carlo ran-
domized algorithm on a random access machine that can compute
the determinant of an n x n matrixin D(n) arithmetic operations.

Then you have a Monte Carlo randomized algorithm on a random
access machine that can multiply two n x n matricesin O(D(n))
arithmetic operations.

No proof is known for Las Vegas or deterministic algorithms.

(At the conference, Peter Biirgisser pointed out to me that D (n)*+o()
IS achievable deterministically by designing a divide-and-conquer
matrix multiplication algorithm from a sufficiently large fixed di-
mension.)



Bit complexity of the determinant

With Chinese remaindering: (nlog ||AJ|)*°Y times matrix multi-
plication complexity.

Sign of the determinant [Clarkson 92]: n*™° if matrix is ill-
conditioned.

Using denominators of linear system solutions [Pan 1989; Abbott,
Bronstein, Mulders 1999]: fast when large first invariant factor.

Using fast Smith form method n>> ) (log [|A[[)%>°1) [Eberly,
Giesbrecht, Villard 2000]



Wiedemann’s 1986 determinant algorithm

For u,v e F"and A € F"™" and consider the sequence of field
elements

p=UvVva=uA,a=uAVa=UuA,...

Let fA(N) =co+CiA + - -+ cA* € F[A] with f A (A) = 0.
Since uTAJf A (A)v = 0, we have

V] >0: codgyj+Crayyj+- -+ Ceaksj =0,
that is, {& }i—o 1. satisfies a linear recurrence.

geoe

By the Berlekamp/Massey (1969) we can compute in n**°1) op-
erations a minimal linear generator for {a; }i_o1

geoes

Wiedemann randomly perturbs A and chooses random u and v; then

9o



Baby steps/giant steps algorithm [Kaltofen 1992/2000]

Detail of sequence a; = u" A'v computation

Letr = [v/2n] and s= [2n/r].
Substep 1. For j =1,2,...,r —1 Do vl — Aly;
Substep 2. Z «— A';
[O(n®) operations; integer length (\/n log||Al[)*Ho™M)]
Substep 3. Fork—1.2,....sDouM' — yTzk:
[O(n?°) operations; integer length (n log ||A[|)*°V]

Substep 4. For | =0.1,....r—1Do |
Fork=0,1,...,5D0 ay; « (u* v,

Overall bit complexity (n**/2log ||A||)*o.



Speed-up with fast matrix multiplication

Suppose k x k matrices can be multiplied in O(k#3>) ring opera-
tions.

Suppose k x k%2%%2 can be multiplied in k*°Y) ring operations.

Overall bit complexity reduces to n>928(log || Al|)**°Y bit opera-
tions.



Coppersmith’s 1992 blocking

Use of the block vectors x € F™F in place of u
y € F™P in place of v

a=x"AyecFPP 0<i<2n/B+2.

Find a minimal matrix polynomial generator
CAO+ -+ cgAd € FP[A], d = [n/B] :

d d
Vj >0: AdiiC = XTAi+jyc- —Q0c FBXB
i; |1 i; |

1
BL_X B

n
n Zn

n B

Note: A must be in general position, otherwise d > [n/(3| and
more sequence elements are needed.



Advantages of blocking

Sequence Is shorter, therefore intermediate integers are shorter.

Disadvantages of blocking

1. Block Berlekamp/Massey step more intricate
and more expensive: R17>°ni+old).

2. Must compute det(co+ - - - + cgA?), which costs extra.
After preconditioning A, with high probability

det(l —AA) = det(cy+ - - - + CgAY).



Sketch of multivariable control theory

From (I —AA) "t =1-+AN+ KA+
XT(1 = AA)“Yy(Cg+ - -+ coAY) = R(\) € F[A]P><P

we obtain a matrix Padé approximation (“realization”)
XT(1 = AA) "ty = ;8N = RO\)(Cg+ -+ CoA) 2

Denominator on left side: det(l —AA).
Denominator on right side: det(cy + - -- + CoAY).

Theorem 1

The determinant of an integer matrix can be computed in
n>%9%3(log || Al[) ¥+ bit operations (at B = n®>° and giant step-
pi ngs= r10.172)_



Division-free determinant complexity

Special sequence for Berlekamp/Massey

Inf[2]:= S = {1,1,2,3,6,10,20,35,70,126,252,462,924,1716%}
In[3]:= BM[S, x]

Discrepancy for r = 1 is 1

L updated to 1, Lambda =1

Discrepancy for r = 2 is 1

Lambda updated to 1 - x

Discrepancy for r = 3 is 1

L updated to 2, Lambda =1 - x - x
Discrepancy for r = 4 is O
Discrepancy for r = 5 is 1

L updated to 3, Lambda =1 - x - 2 x + X
Discrepancy for r = 6 is O
Discrepancy for r = 7 is 1

L updated to 4, Lambda =1 - x - 3 x + 2 x + X
Discrepancy for r = 8 is 0

Discrepancy for r = 9 is 1

L updated to 5, Lambda =1 -x-4x + 3 x +3x - X



10 is O
11 is 1

Discrepancy for r
Discrepancy for

H
I

L updated to 6, Lambda =1 - x-5x +4x +6x - 3X
6

- X
Discrepancy for r = 12 is 0O
Discrepancy for r = 13 is 1
2 3 4
L updated to 7, Lambda =1 -x-6x +5x +10x -6 x
6 7
-4 x +x

Discrepancy for r = 14 is O



Special case for Wiedemann’s determinant algorithm: for

0 1
0 1 .
C= ci:(_l)uni1>/2J<L(”+')/2J>
0 1 |
_CO Ci ... Cho2 Cn—l_
and
ao .
i a; |
a=|100...0] xC'xv, v= S a4:<U/2J)
u' =ef | n-—1 |

the algorithm needs no divisions/decisions.

Block algorithm: x = | -.. |, o | andy =




Strassen’s homotopy:

Compute det(C+ z(A—C)) by truncated power series operations
in Z[z| /(Z"1).

Polynomials in zare like integers: length < degree.

Theorem 2

The determinant and adjoint of a matrix over a commutative ring
can be computed with O(n>%°"3) ring additions, subtractions and
multiplications. The characteristic polynomial with O(n%%°) ring
additions, subtractions and multiplications.



More recent results

Storjohann 2002, 2003: determinant of matrix with polynomi-
als/integers in n>3">> x (input degree/length)*°) field/bit oper-
ations.

Jeannerod and Villard 2003: inverse of matrix with polynomial
entries in (n® x (input degree))**° straight-line steps.

Note: automatic differentiation does not preserve bit complexity:
x'yc where X,y are vectors with constant entries,
c a large constant

takes O(n+ log|c|) bit operations,
yc takes O(nlog|c|) bit operations [Villard 2003].



