On the complexity of the determinant

Erich Kaltofen
North Carolina State University www.kaltofen.us

Joint work with Gilles Villard
ENS Lyon, France

Matrix determinant definition

$$
\operatorname{det}(Y)=\operatorname{det}\left(\left[\begin{array}{ccc}
y_{1,1} & \ldots & y_{1, n} \\
y_{2,1} & \ldots & y_{2, n} \\
\vdots & & \vdots \\
y_{n, 1} & \ldots & y_{n, n}
\end{array}\right]\right)=\sum_{\sigma \in S_{n}}\left(\operatorname{sign}(\boldsymbol{\sigma}) \prod_{i=1}^{n} y_{i, \sigma(i)}\right),
$$

where $y_{i, j}$ are from an arbitrary commutative ring, and S_{n} is the set of all permutations on $\{1,2, \ldots, n\}$.

Interesting rings: $\mathbb{Z}, \mathbb{K}\left[x_{1}, \ldots, x_{n}\right], \mathbb{K}[x] /\left(x^{n}\right)$

An important algebraic reduction
Theorem [Giesbrecht 1992] Suppose you have a Monte Carlo randomized algorithm on a random access machine that can compute the determinant of an $n \times n$ matrix in $D(n)$ arithmetic operations.
Then you have a Monte Carlo randomized algorithm on a random access machine that can multiply two $n \times n$ matrices in $O(D(n))$ arithmetic operations.

No proof is known for Las Vegas or deterministic algorithms. (At the conference, Peter Bürgisser pointed out to me that $D(n)^{1+o(1)}$ is achievable deterministically by designing a divide-and-conquer matrix multiplication algorithm from a sufficiently large fixed dimension.)

Bit complexity of the determinant
With Chinese remaindering: $(n \log \|A\|)^{1+o(1)}$ times matrix multiplication complexity.

Sign of the determinant [Clarkson 92]: $n^{4+o(1)}$ if matrix is illconditioned.

Using denominators of linear system solutions [Pan 1989; Abbott, Bronstein, Mulders 1999]: fast when large first invariant factor.

Using fast Smith form method $n^{3.5+o(1)}(\log \|A\|)^{2.5+o(1)}$ [Eberly, Giesbrecht, Villard 2000]

Wiedemann's 1986 determinant algorithm

For $u, v \in \mathbb{F}^{n}$ and $A \in \mathbb{F}^{n \times n}$ and consider the sequence of field elements

$$
a_{0}=u^{T} v, a_{1}=u^{T} A v, a_{2}=u^{T} A^{2} v, a_{3}=u^{T} A^{3} v, \ldots
$$

Let $f^{(A)}(\lambda)=c_{0}+c_{1} \lambda+\cdots+c_{k} \lambda^{k} \in \mathbb{F}[\lambda]$ with $f^{(A)}(A)=0$. Since $u^{T} A^{j} f^{(A)}(A) v=0$, we have

$$
\forall j \geq 0: c_{0} a_{0+j}+c_{1} a_{1+j}+\cdots+c_{k} a_{k+j}=0
$$

that is, $\left\{a_{i}\right\}_{i=0,1, \ldots}$ satisfies a linear recurrence.

By the Berlekamp/Massey (1969) we can compute in $n^{1+o(1)}$ operations a minimal linear generator for $\left\{a_{i}\right\}_{i=0,1, \ldots}$

Wiedemann randomly perturbs A and chooses random u and v; then $\operatorname{det}(\lambda I-A)=$ the minimal recurrence polynomial of $\left\{a_{i}\right\}_{i=0,1, \ldots 2 n-1}$.

Baby steps/giant steps algorithm [Kaltofen 1992/2000]

Detail of sequence $a_{i}=u^{T} A^{i} v$ computation

Let $r=\lceil\sqrt{2 n}\rceil$ and $s=\lceil 2 n / r\rceil$.
Substep 1. For $j=1,2, \ldots, r-1$ Do $v^{[j]} \leftarrow A^{j} v$;
Substep 2. $Z \leftarrow A^{r}$;
[$O\left(n^{3}\right)$ operations; integer length $(\sqrt{n} \log \|A\|)^{1+o(1)}$]
Substep 3. For $k=1,2, \ldots, s$ Do $u^{[k]}{ }^{T} \leftarrow u^{T} Z^{k}$;
[$O\left(n^{2.5}\right)$ operations; integer length $\left.(n \log \|A\|)^{1+o(1)}\right]$
Substep 4. For $j=0,1, \ldots, r-1$ Do
For $k=0,1, \ldots, s$ Do $a_{k r+j} \leftarrow\left\langle u^{[k]}, \nu^{[j]}\right\rangle$.

Overall bit complexity $\left(n^{3+1 / 2} \log \|A\|\right)^{1+o(1)}$.

Speed-up with fast matrix multiplication
Suppose $k \times k$ matrices can be multiplied in $O\left(k^{2.3755}\right)$ ring operations.

Suppose $k \times k^{0.29462}$ can be multiplied in $k^{2+o(1)}$ ring operations.
Overall bit complexity reduces to $n^{3.0281}(\log \|A\|)^{1+o(1)}$ bit operations.

Coppersmith's 1992 blocking
Use of the block vectors $\mathbf{x} \in \mathbb{F}^{n \times \beta}$ in place of u

$$
\begin{aligned}
\mathbf{y} & \in \mathbb{F}^{n \times \beta} \text { in place of } v \\
\mathbf{a}_{i}=\mathbf{x}^{T} A^{i} \mathbf{y} \in \mathbb{F}^{\beta \times \beta}, & 0 \leq i<2 n / \beta+2
\end{aligned}
$$

Find a minimal matrix polynomial generator $\mathbf{c}_{0} \lambda^{0}+\cdots+\mathbf{c}_{d} \lambda^{d} \in \mathbb{F}^{\beta}[\lambda], d=\lceil n / \beta\rceil:$

$$
\begin{array}{r}
\forall j \geq 0: \sum_{i=0}^{d} \mathbf{a}_{j+i} \mathbf{c}_{i}=\sum_{i=0}^{d} \mathbf{x}^{T} A^{i+j} \mathbf{y} \mathbf{c}_{i}=\mathbf{0} \in \mathbb{F}^{\beta \times \beta} \\
\beta \square \frac{\mathbf{x}}{n} \square_{n}^{n} \prod_{\beta}^{n}{ }^{n} \beta
\end{array}
$$

Note: A must be in general position, otherwise $d>\lceil n / \beta\rceil$ and more sequence elements are needed.

Advantages of blocking
Sequence is shorter, therefore intermediate integers are shorter.

Disadvantages of blocking

1. Block Berlekamp/Massey step more intricate and more expensive: $\beta^{1.3755} n^{1+o(1)}$.
2. Must compute $\operatorname{det}\left(\mathbf{c}_{0}+\cdots+\mathbf{c}_{d} \lambda^{d}\right)$, which costs extra. After preconditioning A, with high probability

$$
\operatorname{det}(I-\lambda A)=\operatorname{det}\left(\mathbf{c}_{0}+\cdots+\mathbf{c}_{d} \lambda^{d}\right)
$$

Sketch of multivariable control theory

From $(I-\lambda A)^{-1}=I+A \lambda+k^{2} \lambda^{2}+\cdots$

$$
\mathbf{x}^{T}(I-\lambda A)^{-1} \mathbf{y}\left(\mathbf{c}_{d}+\cdots+\mathbf{c}_{0} \lambda^{d}\right)=R(\lambda) \in \mathbb{F}[\lambda]^{\beta \times \beta}
$$

we obtain a matrix Padé approximation ("realization")

$$
\mathbf{x}^{T}(I-\lambda A)^{-1} \mathbf{y}=\sum_{i} \mathbf{a}_{i} \lambda^{i}=R(\lambda)\left(\mathbf{c}_{d}+\cdots+\mathbf{c}_{0} \lambda^{d}\right)^{-1}
$$

Denominator on left side: $\operatorname{det}(I-\lambda A)$.
Denominator on right side: $\operatorname{det}\left(\mathbf{c}_{d}+\cdots+\mathbf{c}_{0} \lambda^{d}\right)$.

Theorem 1

The determinant of an integer matrix can be computed in $n^{2.6973}(\log \|A\|)^{1+o(1)}$ bit operations (at $\beta=n^{0.507}$ and giant stepping $\left.s=n^{0.172}\right)$.

Division-free determinant complexity

Special sequence for Berlekamp/Massey

```
\(\operatorname{In}[2]:=S=\{1,1,2,3,6,10,20,35,70,126,252,462,924,1716\}\)
In [3]:= BM[S, x]
Discrepancy for r = 1 is 1
L updated to 1, Lambda = 1
Discrepancy for \(r=2\) is 1
Lambda updated to 1 - x
Discrepancy for r = 3 is 1
2
L updated to 2, Lambda = \(1-\mathrm{x}-\mathrm{x}\)
Discrepancy for \(r=4\) is 0
Discrepancy for \(r=5\) is 1
23
L updated to 3, Lambda \(=1-\mathrm{x}-2 \mathrm{x}+\mathrm{x}\)
Discrepancy for \(r=6\) is 0
Discrepancy for \(r=7\) is 1
L updated to 4 , Lambda \(=1-\mathrm{x}-3 \mathrm{x}^{2}+2 \mathrm{x}^{3}+\mathrm{x}\)
Discrepancy for \(r=8\) is 0
Discrepancy for \(r=9\) is 1
L updated to 5, Lambda \(=1-x^{2}-4 x^{3}+3 x^{4}+3 x^{4}-x^{5}\)
```

Discrepancy for $r=10$ is 0
Discrepancy for $r=11$ is 1
L updated to 6 , Lambda $=1-x-5 x^{2}+4 x^{3}+6 x^{4}-3 x^{5}$ 6

- x

Discrepancy for $r=12$ is 0
Discrepancy for $r=13$ is 1
$\begin{array}{llllll}2 & 3 & 4 & 5\end{array}$
L updated to 7 , Lambda $=1-\mathrm{x}-6 \mathrm{x}+5 \mathrm{x}+10 \mathrm{x}-6 \mathrm{x}$ $6 \quad 7$
$-4 x+x$
Discrepancy for $r=14$ is 0

Special case for Wiedemann's determinant algorithm: for

$$
C=\left[\begin{array}{ccccc}
0 & 1 & & & \\
& 0 & 1 & & \\
& & \ddots & \ddots & \\
& & & 0 & 1 \\
c_{0} & c_{1} & \ldots & c_{n-2} & c_{n-1}
\end{array}\right] \quad c_{i}=(-1)^{\lfloor(n-i-1) / 2\rfloor}\binom{\lfloor(n+i) / 2\rfloor}{ i}
$$

and

$$
a_{i}=\underbrace{\left[\begin{array}{lllll}
1 & 0 & 0 & \ldots & 0
\end{array}\right]}_{u^{T}=e_{1}^{T}} \times C^{i} \times v, \quad v=\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1}
\end{array}\right], \quad a_{i}=\binom{i}{\lfloor i / 2\rfloor}
$$

the algorithm needs no divisions/decisions.

Block algorithm: $\mathbf{x}=\left[\begin{array}{lll}u & & \\ & \ddots & \\ & & u\end{array}\right],\left[\begin{array}{lll}C & & \\ & \ddots & \\ & & C\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{lll}v & & \\ & & \ddots \\ & & v\end{array}\right]$.

Strassen's homotopy:
Compute $\operatorname{det}(C+z(A-C))$ by truncated power series operations in $\mathbb{Z}[z] /\left(z^{n+1}\right)$.

Polynomials in z are like integers: length \leftrightarrow degree.

Theorem 2

The determinant and adjoint of a matrix over a commutative ring can be computed with $O\left(n^{2.6973}\right)$ ring additions, subtractions and multiplications. The characteristic polynomial with $O\left(n^{2.8066}\right)$ ring additions, subtractions and multiplications.

Storjohann 2002, 2003: determinant of matrix with polynomials/integers in $n^{2.3755} \times(\text { input degree/length })^{1+o(1)}$ field/bit operations.

Jeannerod and Villard 2003: inverse of matrix with polynomial entries in $\left(n^{3} \times(\text { input degree })\right)^{1+o(1)}$ straight-line steps.

Note: automatic differentiation does not preserve bit complexity:
$x^{T} y c$ where x, y are vectors with constant entries,
c a large constant
takes $O(n+\log |c|)$ bit operations, yc takes $O(n \log |c|)$ bit operations [Villard 2003].

