
On the complexity of the determinant

Erich Kaltofen
North Carolina State University

www.kaltofen.us

Joint work with Gilles Villard
ENS Lyon, France



Matrix determinant definition

det(Y ) = det(
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y1,1 . . . y1,n

y2,1 . . . y2,n
... ...

yn,1 . . . yn,n
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

) = ∑

σ∈Sn

(

sign(σ)
n

∏
i=1

yi,σ(i)

)

,

where yi, j are from an arbitrary commutative ring,
and Sn is the set of all permutations on {1,2, . . . ,n}.

Interesting rings: Z, K[x1, . . . ,xn], K[x]/(xn)



An important algebraic reduction

Theorem [Giesbrecht 1992] Suppose you have a Monte Carlo ran-
domized algorithm on a random access machine that can compute
the determinant of an n×n matrix in D(n) arithmetic operations.

Then you have a Monte Carlo randomized algorithm on a random
access machine that can multiply two n× n matrices in O(D(n))
arithmetic operations.

No proof is known for Las Vegas or deterministic algorithms.
(At the conference, Peter Bürgisser pointed out to me that D(n)1+o(1)

is achievable deterministically by designing a divide-and-conquer
matrix multiplication algorithm from a sufficiently large fixed di-
mension.)



Bit complexity of the determinant

With Chinese remaindering: (n log‖A‖)1+o(1) times matrix multi-
plication complexity.

Sign of the determinant [Clarkson 92]: n4+o(1) if matrix is ill-
conditioned.

Using denominators of linear system solutions [Pan 1989; Abbott,
Bronstein, Mulders 1999]: fast when large first invariant factor.

Using fast Smith form method n3.5+o(1)(log‖A‖)2.5+o(1) [Eberly,
Giesbrecht, Villard 2000]



Wiedemann’s 1986 determinant algorithm

For u,v ∈ F
n and A ∈ F

n×n and consider the sequence of field
elements

a0 = uT v, a1 = uT Av, a2 = uT A2v, a3 = uT A3v, . . .

Let f (A)(λ) = c0 + c1λ+ · · ·+ ckλk ∈ F[λ] with f (A)(A) = 0.
Since uT Aj f (A)(A)v = 0, we have

∀ j ≥ 0: c0a0+ j + c1a1+ j + · · ·+ ckak+ j = 0,

that is, {ai}i=0,1,... satisfies a linear recurrence.

By the Berlekamp/Massey (1969) we can compute in n1+o(1) op-
erations a minimal linear generator for {ai}i=0,1,...

Wiedemann randomly perturbs A and chooses random u and v; then
det(λI−A)= the minimal recurrence polynomial of {ai}i=0,1,...2n−1.



Baby steps/giant steps algorithm [Kaltofen 1992/2000]

Detail of sequence ai = uT Aiv computation

Let r = d
√

2ne and s = d2n/re.
Substep 1. For j = 1,2, . . . ,r−1 Do v[ j]← Ajv;

Substep 2. Z← Ar;
[O(n3) operations; integer length (

√
n log‖A‖)1+o(1)]

Substep 3. For k = 1,2, . . . ,s Do u[k]T ← uT Zk;
[O(n2.5) operations; integer length (n log‖A‖)1+o(1)]

Substep 4. For j = 0,1, . . . ,r−1 Do
For k = 0,1, . . . ,s Do akr+ j← 〈u[k],v[ j]〉.

Overall bit complexity (n3+1/2 log‖A‖)1+o(1).



Speed-up with fast matrix multiplication

Suppose k×k matrices can be multiplied in O(k2.3755) ring opera-
tions.

Suppose k× k0.29462 can be multiplied in k2+o(1) ring operations.

Overall bit complexity reduces to n3.0281(log‖A‖)1+o(1) bit opera-
tions.



Coppersmith’s 1992 blocking

Use of the block vectors x ∈ F
n×β in place of u

y ∈ F
n×β in place of v

ai = xT Aiy ∈ F
β×β, 0≤ i < 2n/β+2.

Find a minimal matrix polynomial generator
c0λ0 + · · ·+ cdλd ∈ F

β[λ], d = dn/βe :

∀ j ≥ 0:
d

∑
i=0

a j+ici =
d

∑
i=0

xT Ai+ jyci = 0 ∈ F
β×β

n

n

β

n
β β

1

n

x

z

Note: A must be in general position, otherwise d > dn/βe and
more sequence elements are needed.



Advantages of blocking

Sequence is shorter, therefore intermediate integers are shorter.

Disadvantages of blocking

1. Block Berlekamp/Massey step more intricate
and more expensive: β1.3755n1+o(1).

2. Must compute det(c0 + · · ·+ cdλd), which costs extra.
After preconditioning A, with high probability

det(I−λA) = det(c0 + · · ·+ cdλd).



Sketch of multivariable control theory

From (I−λA)−1 = I +Aλ+ k2λ2 + · · ·
xT(I−λA)−1y(cd + · · ·+ c0λd) = R(λ) ∈ F[λ]β×β

we obtain a matrix Padé approximation (“realization”)

xT(I−λA)−1y = ∑i aiλi = R(λ)(cd + · · ·+ c0λd)−1

Denominator on left side: det(I−λA).
Denominator on right side: det(cd + · · ·+ c0λd).

Theorem 1
The determinant of an integer matrix can be computed in
n2.6973(log‖A‖)1+o(1) bit operations (at β = n0.507 and giant step-
ping s = n0.172).



Division-free determinant complexity

Special sequence for Berlekamp/Massey
In[2]:= S = {1,1,2,3,6,10,20,35,70,126,252,462,924,1716}

In[3]:= BM[S, x]

Discrepancy for r = 1 is 1

L updated to 1, Lambda = 1

Discrepancy for r = 2 is 1

Lambda updated to 1 - x

Discrepancy for r = 3 is 1

2

L updated to 2, Lambda = 1 - x - x

Discrepancy for r = 4 is 0

Discrepancy for r = 5 is 1

2 3

L updated to 3, Lambda = 1 - x - 2 x + x

Discrepancy for r = 6 is 0

Discrepancy for r = 7 is 1

2 3 4

L updated to 4, Lambda = 1 - x - 3 x + 2 x + x

Discrepancy for r = 8 is 0

Discrepancy for r = 9 is 1

2 3 4 5

L updated to 5, Lambda = 1 - x - 4 x + 3 x + 3 x - x



Discrepancy for r = 10 is 0

Discrepancy for r = 11 is 1

2 3 4 5

L updated to 6, Lambda = 1 - x - 5 x + 4 x + 6 x - 3 x

6

- x

Discrepancy for r = 12 is 0

Discrepancy for r = 13 is 1

2 3 4 5

L updated to 7, Lambda = 1 - x - 6 x + 5 x + 10 x - 6 x

6 7

- 4 x + x

Discrepancy for r = 14 is 0



Special case for Wiedemann’s determinant algorithm: for

C =
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c0 c1 . . . cn−2 cn−1
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ci = (−1)b(n−i−1)/2c
(b(n+ i)/2c

i

)

and

ai =
[
1 0 0 . . . 0

]

︸ ︷︷ ︸

uT = eT
1

×Ci× v, v =


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a0
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...

an−1
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, ai =

(
i
bi/2c

)

the algorithm needs no divisions/decisions.

Block algorithm: x =





u
. . .

u



 ,





C
. . .

C



 and y =
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v
. . .

v



 .



Strassen’s homotopy:

Compute det(C + z(A−C)) by truncated power series operations
in Z[z]/(zn+1).

Polynomials in z are like integers: length↔ degree.

Theorem 2
The determinant and adjoint of a matrix over a commutative ring
can be computed with O(n2.6973) ring additions, subtractions and
multiplications. The characteristic polynomial with O(n2.8066) ring
additions, subtractions and multiplications.



More recent results

Storjohann 2002, 2003: determinant of matrix with polynomi-
als/integers in n2.3755× (input degree/length)1+o(1) field/bit oper-
ations.

Jeannerod and Villard 2003: inverse of matrix with polynomial
entries in (n3× (input degree))1+o(1) straight-line steps.

Note: automatic differentiation does not preserve bit complexity:

xT yc where x,y are vectors with constant entries,
c a large constant

takes O(n+ log |c|) bit operations,
yc takes O(n log |c|) bit operations [Villard 2003].


