Polynomial Factorization: a Success Story

Erich Kaltofen
North Carolina State University
www.kaltofen.us

Letter by Gödel to John von Neumann 1956
\because Or. Hao Wang with beis wiskes and sorpy GThen
 -Licber Hen viNemam sins:
Ith habe mit giontan Bedanem von Tha En Mantiung yehoita i) Nachinchti Ram ming goun

Princeton 20./III. 1956
Goedl
Lieber Herr v. Neumann!

Letter by Gödel to John von Neumann 1956
problems eshalten kamn; 2. beolentet jue $\varphi(n) \sim K . m$ (ooda ~ $K_{n^{2}}$) bloss, dan $\alpha \dot{\text { u }}$ Antahl da Soknithe yoymïter dom blosion P_{1} sbiesen von N an $/$ bog N coola $\log (N)^{2}$) wasingett werdon kam. So atanke Versingerunyen komman aber bei modern finiton Problemen

 Such strong speedups [N to $(\log N)^{2}$] can occur for other finite problems, e.g. when computing the quadratic residuosity by repeated application of the reciprocity law.

Letter by Gödel to John vo Neumann 1956
Ratiprovitax yentotes. En vance inthanamt th visa.
 Bake it, atcht wi wis stent is ally em ina beifiniten kombinato indian Paotconem olio thatall ais Scathe

... It would be interesting to know, how it is with that, e.g. about the decision if a number is a prime number, a. how much in general for finite combinatorial problems the number of steps can be reduced versus trying all possibilities.

Las Vegas Squareroots Modulo Large p
Problem: given a prime number $p>2$ and $b \in \mathbb{Z}_{p}$ factor $x^{2}-b \equiv(x+a)(x-a)(\bmod p)$

Algorithm: pick random $u, v \in \mathbb{Z}_{p}$ and compute

$$
\operatorname{GCD}\left(x^{2}-b, 1+(u x+v)^{\frac{p-1}{2}} \bmod \left(x^{2}-b\right)\right)
$$

If

$$
\begin{aligned}
& (u x+v)^{\frac{p-1}{2}} \bmod (x+a) \equiv(-u a+v)^{\frac{p-1}{2}}=-1 \\
& (u x+v)^{\frac{p-1}{2}} \bmod (x-a) \equiv(u a+v)^{\frac{p-1}{2}} \neq-1
\end{aligned}
$$

the factor $x+a$ is found.

Monte Carlo Primality Testing
Problem: given an odd integer $m \neq k^{j}$, test if m is prime.
Algorithm: pick random $c \in \mathbb{Z}_{m}$ and factor $x^{2}-\left(c^{2} \bmod m\right)$.
If $\operatorname{GCD}(\ldots)=1$ for most c, u, v
we are either very unlucky, or m is composite.
If $a \equiv \pm c \bmod m$ for all c, we are either very unlucky, or m is prime.

Monte Carlo Primality Testing
Problem: given an odd integer $m \neq k^{j}$, test if m is prime.
Algorithm: pick random $c \in \mathbb{Z}_{m}$ and factor $x^{2}-\left(c^{2} \bmod m\right)$.
If $\operatorname{GCD}(\ldots)=1$ for most c, u, v
we are either very unlucky, or m is composite.
If $a \equiv \pm c \bmod m$ for all c, we are either very unlucky, or m is prime.

Reason: if m is composite, there are two $a_{1}, a_{2} \neq \pm c$ with $a_{1}^{2} \equiv a_{2}^{2} \equiv c^{2}(\bmod m)$

Example: $37 \equiv 10^{2} \equiv 17^{2} \equiv 46^{2} \equiv 53^{2}(\bmod 63)$

Best algorithms for $\mathbb{F}_{q}[x]: O\left(n^{y}\right)$ arithmetic operations in \mathbb{F}_{q}

$$
\mathrm{n}=\text { degree, } \mathrm{q}=\text { number of field elements }
$$

Factorization in $\mathbb{Z}[x]$
Berlekamp/Zassenhaus 1969 algorithm exponential in worst case

LLL 1982 overcome by lattice basis reduction

Sasaki et al. 1993/van Hoeij 2000 find small low dimen. lattices

Factorization in $\mathbb{Z}[x]$
Sasaki et al. 1993/van Hoeij 2000 find small low dimen. lattices

Idea: Let $f \equiv g \cdot h \cdots w\left(\bmod p^{k}\right), \alpha_{j}, \beta_{j}, \ldots, \omega_{j}$ be the roots of g, h, \ldots, w; compute short column space vector of

$$
\left[\begin{array}{ccccccc}
C & 0 & \ldots & 0 & 0 & 0 & \cdots \\
0 & C & \cdots & 0 & \vdots & : & \\
\vdots & & \ddots & \vdots & & & \\
0 & 0 & \cdots & C & 0 & 0 & \cdots \\
\sum_{j} \alpha_{j} & \sum_{j} \beta_{j} & \cdots & \sum_{j} \omega_{j} & p^{k} & 0 & \cdots \\
\sum_{j} \alpha_{j}^{2} & \sum_{j} \beta_{j}^{2} & \cdots & \sum_{j} \omega_{j}^{2} & 0 & p^{k} & \\
\vdots & \vdots & & \vdots & \vdots & & \cdots
\end{array}\right] \longleftarrow \text { forces } 0 \text { or } 1 \text { component }
$$

Factorization in $\mathbb{Z}[x]$
From my 1982 survey
"As we will see below, in the worst case step (F5) is the dominant step in our algorithm. Therefore one is advised to test first whether the second highest coefficient is absolutely smaller than $\operatorname{deg}(f)\|f\|_{2}$, the corresponding factor coefficient bound, or whether the constant coefficient of $g(x)$ divides that of $f(x) . "$

Factorization in $\mathbb{Z}[x]$
From my 1982 survey
"As we will see below, in the worst case step (F5) is the dominant step in our algorithm. Therefore one is advised to test first whether the second highest coefficient is absolutely smaller than $\operatorname{deg}(f)\|f\|_{2}$, the corresponding factor coefficient bound, or whether the constant coefficient of $g(x)$ divides that of $f(x) . "$

Factorization in $\mathbb{Z}_{p}[y][x]$
Masayuki Noro and Kazuhiro Yokoyama [ISSAC 2002] use Gröbner walk to obtain fantastic practical performance.

Gao's 2000 algorithm in $\mathbb{C}[x, y]$
Let $f \in \mathbb{C}[x, y]$ squarefree

Ruppert's [1986] differential equation

$$
\frac{\partial}{\partial y}\left(\frac{g}{f}\right)=\frac{\partial}{\partial x}\left(\frac{h}{f}\right),\left\{\begin{array}{l}
\operatorname{deg}_{x}(g)<\operatorname{deg}_{x}(f), \operatorname{deg}_{x}(h) \leq \operatorname{deg}_{x}(f), \\
\operatorname{deg}_{y}(g) \leq \operatorname{deg}_{y}(f), \operatorname{deg}_{y}(h)<\operatorname{deg}_{y}(f) .
\end{array}\right.
$$

For the factorization $f=f_{1} \cdots f_{r}$ over \mathbb{C} we have

$$
g=\lambda_{1} \frac{f}{f_{1}} \frac{\partial f_{1}}{\partial x}+\cdots+\lambda_{r} \frac{f}{f_{r}} \frac{\partial f_{r}}{\partial x}, \quad \lambda_{i} \in \mathbb{C}
$$

$$
f=\prod_{\lambda \in \mathbb{C}} \mathrm{GCD}\left(f, g-\lambda \frac{\partial f}{\partial x}\right) .
$$

\longrightarrow John May’s

talk

Hard problems for sparse polynomials $\sum_{i} c_{i} z^{e_{i}} \in \mathbb{Z}[z]$
Plaisted 1977: Let $N=\prod_{i=1}^{n} p_{i}$, where p_{i} distinct primes.

Formula
Polynomial

$$
\begin{array}{cc}
x_{j} & z^{\overline{p_{j}}}-1 \\
\neg x_{k} & \frac{z^{N}-1}{z^{\frac{N}{p_{k}}}-1}=\sum_{i=0}^{p_{k}-1} z^{\frac{i N}{p_{k}}}
\end{array}
$$

Rootset

$$
z^{\frac{N}{p_{j}}}-1 \quad\left\{\left.\left(e^{\frac{2 \pi \mathbf{i}}{N}}\right)^{a} \right\rvert\, a \equiv 0\left(\bmod p_{j}\right)\right\}
$$

$$
\frac{z^{N}-1}{z^{\frac{N}{p_{k}}}-1}=\sum_{i=0}^{p_{k}-1} z^{\frac{i N}{p_{k}}} \quad\left\{\left.\left(e^{\frac{2 \pi \mathbf{i}}{N}}\right)^{b} \right\rvert\, b \not \equiv 0\left(\bmod p_{k}\right)\right\}
$$

$L_{1} \vee L_{2} \operatorname{LCM}\left(\operatorname{Poly}\left(L_{1}\right), \operatorname{Poly}\left(L_{2}\right)\right) \quad \operatorname{Roots}\left(L_{1}\right) \cup \operatorname{Roots}\left(L_{2}\right)$
$x_{j} \vee \neg x_{k} \quad \frac{\left(z^{\frac{N}{p^{p}} p_{k}}-1\right)\left(z^{N}-1\right)}{z^{\frac{N}{p_{k}}}-1} \quad$ (is sparse polynomial)

Hard problems for sparse polynomials $\sum_{i} c_{i} z^{e_{i}} \in \mathbb{Z}[z]$
Plaisted 1977: Let $N=\prod_{i=1}^{n} p_{i}$, where p_{i} distinct primes.

Formula

$$
\begin{array}{cc}
x_{j} & z^{\overline{p_{j}}}-1 \\
\neg x_{k} & \frac{z^{N}-1}{z^{\frac{N}{p_{k}}}-1}=\sum_{i=0}^{p_{k}-1} z^{\frac{i N}{p_{k}}}
\end{array}
$$

Rootset

$$
\begin{aligned}
& \left\{\left.\left(e^{\frac{2 \pi \mathbf{i}}{N}}\right)^{a} \right\rvert\, a \equiv 0\left(\bmod p_{j}\right)\right\} \\
& \left\{\left.\left(e^{\frac{2 \pi \mathbf{i}}{N}}\right)^{b} \right\rvert\, b \not \equiv 0\left(\bmod p_{k}\right)\right\}
\end{aligned}
$$

$L_{1} \vee L_{2} \operatorname{LCM}\left(\operatorname{Poly}\left(L_{1}\right), \operatorname{Poly}\left(L_{2}\right)\right) \quad \operatorname{Roots}\left(L_{1}\right) \cup \operatorname{Roots}\left(L_{2}\right)$
$x_{j} \vee \neg x_{k} \quad \frac{\left(z^{\frac{N}{p^{p}} p_{k}}-1\right)\left(z^{N}-1\right)}{z^{\frac{N}{p_{k}}}-1} \quad$ (is sparse polynomial)

$$
C_{1} \wedge C_{2} \operatorname{GCD}\left(\operatorname{Poly}\left(C_{1}\right), \operatorname{Poly}\left(C_{2}\right)\right) \quad \operatorname{Roots}\left(C_{1}\right) \cap \operatorname{Roots}\left(C_{2}\right)
$$

Theorem $C_{1} \wedge \cdots \wedge C_{l}$ is satisfiable

$$
\Longleftrightarrow \operatorname{GCD}\left(\operatorname{Poly}\left(C_{1}\right), \ldots, \operatorname{Poly}\left(C_{l}\right)\right) \neq 1
$$

Other hard problems [Plaisted 1977/78]

1. Given sequences $a_{1}, \ldots, a_{m} \in \mathbb{Z}$ and $b_{1}, \ldots b_{n} \in \mathbb{Z}$ determine whether

$$
\prod_{i=1}^{m}\left(z^{a_{i}}-1\right) \quad \text { is not a factor of } \quad \prod_{i=1}^{n}\left(z^{b_{i}}-1\right)
$$

2. Given a set $\left\{a_{1}, \ldots, a_{m}\right\} \subset \mathbb{Z}$ determine whether

$$
\int_{0}^{2 \pi} \cos \left(a_{1} \theta\right) \cdots \cos \left(a_{m} \theta\right) \mathrm{d} \theta \neq 0
$$

Easy problems for sparse polynomials $f=\sum_{i} c_{i} x^{e_{i}} \in \mathbb{Z}[z]$
Cucker, Korian, Smale 1998: Compute root $a \in \mathbb{Z}: f(a)=0$.

Gap idea: if $f(a)=0, a \neq \pm 1$ then $g_{1}(a)=\cdots=g_{s}(a)=0$ where $f(x)=\sum_{j} g_{j}(x) x^{u_{j}}$ and $u_{j+1}-u_{j}-\operatorname{deg}\left(g_{j}\right)>b$.

Easy problems for sparse polynomials $f=\sum_{i} c_{i} x^{e_{i}} \in \mathbb{Z}[z]$
Cucker, Korian, Smale 1998: Compute root $a \in \mathbb{Z}: f(a)=0$.

Gap idea: if $f(a)=0, a \neq \pm 1$ then $g_{1}(a)=\cdots=g_{s}(a)=0$ where $f(x)=\sum_{j} g_{j}(x) x^{u_{j}}$ and $u_{j+1}-u_{j}-\operatorname{deg}\left(g_{j}\right)>b$.

Write $f(x)=\underbrace{g(x)}_{\operatorname{deg}(g)<d}+x^{d+b} h(x), \quad\|f\|_{1}=\left|c_{1}\right|+\cdots+\left|c_{t}\right|$.

For $a \neq \pm 1, h(a) \neq 0$:

$$
\begin{aligned}
|g(a)| & <\|f\|_{1} \cdot|a|^{d} \\
\left|a^{d+b} h(a)\right| & >|a|^{d+b}
\end{aligned}
$$

Easy problems for sparse polynomials $f=\sum_{i} c_{i} x^{e_{i}} \in \mathbb{Z}[z]$
Cucker, Korian, Smale 1998: Compute root $a \in \mathbb{Z}: f(a)=0$.

Gap idea: if $f(a)=0, a \neq \pm 1$ then $g_{1}(a)=\cdots=g_{s}(a)=0$ where $f(x)=\sum_{j} g_{j}(x) x^{u_{j}}$ and $u_{j+1}-u_{j}-\operatorname{deg}\left(g_{j}\right)>b$.

Write $f(x)=\underbrace{g(x)}_{\operatorname{deg}(g)<d}+x^{d+b} h(x), \quad\|f\|_{1}=\left|c_{1}\right|+\cdots+\left|c_{t}\right|$.

For $a \neq \pm 1, h(a) \neq 0$:

$$
\begin{aligned}
|g(a)| & <\|f\|_{1} \cdot|a|^{d} \\
\left|a^{d+b} h(a)\right| & >|a|^{d+b}
\end{aligned}
$$

$b>\log _{2}\|f\|_{1} \Longrightarrow|a|^{d+b}>2^{b} \cdot|a|^{d}>\|f\|_{1} \cdot|a|^{d} \Longrightarrow f(a) \neq 0$.

Generalization by H. W. Lenstra, Jr. 1999

Input: \quad a sparse $f(x)=\sum_{i=1}^{t} c_{i} x^{e_{i}} \in \mathbb{Z}[z]$ $\varphi(\zeta) \in \mathbb{Z}[\zeta]$ monic irred.; let $K=\mathbb{Q}[\zeta] /(\varphi(\zeta))$
a factor degree bound d
Output: a list of all irreducible factors of f over K of degree $\leq d$

Bit complexity is $(\underline{t+\log (\operatorname{deg} f)}+\log \|f\|+\log \|\varphi\|)^{O(d \cdot \operatorname{deg}(\varphi))}$

Special case $\varphi=1, d=1$: Algorithm finds all rational roots in polynomial time.

Open Problem: Roots of Trinomials in \mathbb{Z}_{p}

Given a prime number p and integers $b, c \in \mathbb{Z}_{p}, d>e$ compute $y \in \mathbb{Z}_{p}$ such that

$$
y^{d}+b y^{e}+c \equiv 0 \quad(\bmod p)
$$

in time

$$
(\log (d)+\log (p))^{O(1)}
$$

Alternatively, prove that computing a root in \mathbb{Z}_{p} of a polynomial given by straight-line program over \mathbb{Z}_{p} is NP-hard.

Status of My ECCAD'98 Challenge Problems

Problem 1: Nearby multivariate polynomials that factor over \mathbb{C} Status: Open, but many new numerical algorithms
E.g., Lihong Zhi shows some early success with the algorithm suggested in the paper here with John May

Status of My ECCAD'98 Challenge Problems

Problem 1: Nearby multivariate polynomials that factor over \mathbb{C} Status: Open, but many new numerical algorithms
E.g., Lihong Zhi shows some early success with the algorithm suggested in the paper here with John May

Problem 2: Collins's Zolotarev's problem on a computer Status: Unknown

Status of My ECCAD'98 Challenge Problems

Problem 1: Nearby multivariate polynomials that factor over \mathbb{C} Status: Open, but many new numerical algorithms
E.g., Lihong Zhi shows some early success with the algorithm suggested in the paper here with John May

Problem 2: Collins's Zolotarev's problem on a computer Status: Unknown

Problem 3: Characteristic polynomial of a black box matrix Status: Progress in [Villard CASC 2000]

Improved bit complexity results in dense case by Kaltofen and Villard 2003.

Status of My ECCAD'98 Challenge Problems

Problem 4: Lattice basis reduction-safe GGH-like cryptosystems Status: See www.ntru.com, CRYPTO 2003

Status of My ECCAD'98 Challenge Problems
Problem 4: Lattice basis reduction-safe GGH-like cryptosystems Status: See www.ntru.com, CRYPTO 2003

Problem 5: Gröbner bases via iterative numerical methods Status: Ongoing work; see [Traverso and Zanoni ISSAC 2002]

Status of My ECCAD'98 Challenge Problems

Problem 4: Lattice basis reduction-safe GGH-like cryptosystems Status: See www.ntru.com, CRYPTO 2003

Problem 5: Gröbner bases via iterative numerical methods Status: Ongoing work; see [Traverso and Zanoni ISSAC 2002]

Problem 6: Space and time efficient transposition principle Status: Substantial progress [Bostan, Lecerf, Schost ISSAC 2003]

Status of My ECCAD'98 Challenge Problems
Problem 7: Plug-and-play and generic programming methodology for symbolic computation Status: Open

Surprises from LinBox project using C++ allocators

```
myAllocator a;
myAllocator::pointer p = a.allocate(1);
a.construct(p,0); // effect: new((void*)p) T(0)
a.destroy(p); // effect: ((T*)p)-> ~T()
a.deallocate(p,1);
```

Status of My ECCAD'98 Challenge Problems
Problem 7: Plug-and-play and generic programming methodology for symbolic computation
Status: Open
Surprises from LinBox project using C++ allocators

```
myAllocator a;
myAllocator: pointer p = a.allocate(1);
a.construct(p,0); // effect: new((void*)p) T(0)
a.destroy (p); // effect: ((T*)p)->~T()
a.deallocate(p,1);
```


ANSI/ISO 14882 Section 20.1.5.4

"Implementations of containers ... are permitted to assume that their Allocator template parameter meets the following two additional requirements ...
— the typedef members pointer, ... are required to be $\mathrm{T} *$..."

Status of My ECCAD'98 Challenge Problems

Problem 8: Another "killer" application besides education Status: 1999 Physics Nobel Prize for SCHOONSCHIP

Subject of ACA 2003 panel discussion

What is an algorithm?

- finite unambiguous list of steps ("control, program")
- computes a function from $D \longrightarrow E$ where D is infinite ("infinite Turing tape")

Ambiguity through randomization

- Monte Carlo (BPP): "always fast, probably correct". Examples: isprime

Lemma [DeMillo\&Lipton'78, Schwartz/Zippel'79] Let $f, g \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right], f \neq g, S \subseteq \mathbb{F}$.

$$
\begin{aligned}
& \operatorname{Probability}\left(f\left(a_{1}, \ldots, a_{n}\right) \neq g\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in S\right) \\
& \geq 1-\max \{\operatorname{deg}(f), \operatorname{deg}(g)\} / \operatorname{cardinality}(S)
\end{aligned}
$$

sparse polynomial interpolation, factorization, minimal polynomial of a sparse matrix

Do we exactly know what the algorithm computes? E.g., in the presence of floating point arithmetic?

- Las Vegas (RP): "always correct, probably fast". Examples: polynomial factorization in $\mathbb{Z}_{p}[x]$, where $p \gg 2$. Determinant of a sparse matrix

De-randomization: conjectured slow-down is within polynomial complexity.

Shuhong Gao, E. Kaltofen, and Lauder, A., "Deterministic distinct degree factorization for polynomials over finite fields," 2001.
M. Agrawal, N. Kayal, N. Saxena, "PRIMES is in P," 2002.

Kabanets and Impagliazzo [STOC 2003] If Schwartz/Zippel can be de-randomized (subexponentially), then there do not exist polynomial-size circuits for NEXP or the permanent.

Efficiency dilemma: the higher the confidence in the result, the more time it takes to compute it.

Black box polynomials

\mathbb{F} an arbitrary field, e.g., rationals, reals, complexes

Perform polynomial algebra operations, e.g., factorization with
$(n \cdot \operatorname{deg}(f))^{O(1)}\left\{\begin{array}{l}\text { black box calls, } \\ \text { arithmetic operations in } \mathbb{F} \text { and } \\ \text { randomly selected elements in } \mathbb{F}\end{array}\right.$

Kaltofen and Trager 1988 efficiently construct the following efficient program:

Given a black box

compute by multiple evaluation of this black box the sparse representation of f

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{t} a_{i} x_{1}^{e_{i, 1}} \cdots x_{n}^{e_{i, n}}, \quad a_{i} \neq 0
$$

Many algorithms that are polynomial-time in $\operatorname{deg}(f), n, t$:
Zippel 1979, 1988; Ben-Or, Tiwari 1988
Kaltofen, Lakshman, Wiley 1988, 1990
Grigoriev, Karpinski, Singer 1988
Kaltofen, Lee, Lobo 2000, 2003
Mansour 1992; Giesbrecht, Lee, Labahn 2003: numerical method

Sparsity with non-standard basis

In place of x^{e} use
$(x-a)^{e} \quad$ shifted basis
$x(x+1) \cdots(x+e-1)$ Pochhammer basis
$T_{e}(x) \quad$ Chebyshev basis

Algorithms:
Lakshman, Saunders 1992, 1994: Chebyshev, Pochh., shifted
Grigoriev, Karpinski 1993: shifted
Grigoriev, Lakshman 1995: shifted
Lee 2001: Chebyshev, Pochhammer, shifted
Giesbrecht, Kaltofen and Lee 2002, 2003: shifted

FoxBox [Díaz, Kaltofen 1998] example: determinant of symmetric Toeplitz matrix

$$
\begin{array}{r}
\operatorname{det}\left(\left[\begin{array}{ccccc}
a_{0} & a_{1} & \ldots & a_{n-2} & a_{n-1} \\
a_{1} & a_{0} & \ldots & a_{n-3} & a_{n-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{n-2} & a_{n-3} & \ldots & a_{0} & a_{1} \\
a_{n-1} & a_{n-2} & \ldots & a_{1} & a_{0}
\end{array}\right]\right) \\
\\
=F_{1}\left(a_{0}, \ldots, a_{n-1}\right) \cdot F_{2}\left(a_{0}, \ldots, a_{n-1}\right) \\
\text { over the integers. }
\end{array}
$$

Serialization of factors box of 8 by 8 symmetric Toeplitz matrix modulo 65521
$15,8,-1,1,2,2,-1,8,1,7,1,1,20752,-1,1,39448,33225,984,17332,53283$, 35730,23945,13948,22252,52005,13703,8621,27776,33318,2740, 4472,36959,17038,55127,16460,26669,39430,1,0,1,4,20769,16570, 58474,30131,770,4,25421,22569,51508,59396,10568,4,20769,16570, 58474,30131,770,8,531,55309,40895,38056,34677,30870,397,59131, 12756,3,13601,54878,13783,39334,3,41605,59081,10842,15125, $3,45764,5312,9992,25318,3,59301,18015,3739,13650,3,23540,44673$, $45053,33398,3,4675,39636,45179,40604,3,49815,29818,2643,16065$, $3,46787,46548,12505,53510,3,10439,37666,18998,32189,3,38967$, 14338,31161,12779,3,27030,21461,12907,22939,3,24657,32725, $47756,22305,3,44226,9911,59256,54610,3,56240,51924,26856,52915$, 3,16133,61189,17015,39397,3,24483,12048,40057,21323

Serialization of checkpoint during sparse interpolation

28, 14, 9, 64017, 31343, 5117, 64185, 47755, 27377, 25604, $6323,41969,14,3,4,0,0,3,4,0,1,3,4,0,2,3,4,0,3,3$, $4,0,4,3,4,1,0,3,4,1,1,3,4,1,2,3,4,1,3,3,4,2,0,3,4,2$, $1,3,4,2,2,3,4,3,0,3,4,3,1,14,59877,1764,59012,44468$, $1,19485,25871,3356,2,58834,49014,65518,15714,65520,1$, $2,4,4,1,1$

Numerical	Randomized (Monte Carlo)
more efficiency, but	more efficiency, but
approximate result	uncertain result
ill-conditionedness	unfavorable inputs:
near singular inputs	pseudo-primes,
	$\sum_{i} \prod_{j}\left(x_{i}-j\right)$,
	Coppersmith's "pathological" matrices
convergence analysis	probabilistic analysis
try algorithms on	try algorithms
unproven inputs	with limited randomness

Numerical + randomized, e.g., LinBox's matrix preconditioners: all of the above(?)

Hallmarks of a good heuristic

- Is algorithmic in nature, i.e., always terminates with a result of possibly unknown validity
- Is a proven complete solution in a more stringent setting, for example, by restricting the inputs or by slowing the algorithm
- Has an experimental track record, for example, works on 50% of cases

A Protocol for Spam Prevention [M. Naor et al., CRYPTO 2003]

From: "Dr. Cecilia Samarachi (Mrs)" C.Samara91Dr@netscape.net
Date: Sun, 25 May 2003 13:15:39
To: kaltofen@math.ncsu.edu
Dear Friend, VERY URGENT BUSINESS RELATIONSHIP.
My Ministry wants to award some major contracts and this contracts have been approved, implementation is on the pipeline and this contract is on supply of AGRICULTURAL CHEMICAL AND DRUGS/INJECTIONS FOR COW TREATMENT.

1. I want to use this last opportunity while still in the office to extract some money by inflating this contract to be awarded, and the over-invoiced amount I will use to establish my own hospital in U.K. or Germany after the transaction.
2. The inflated money (over-invoiced) from this contract will be immediately paid (Transfered) to my account in U.K. on confirmation of payment to your Bank.
3. I sincerely promise to approve your quotations on submission at all cost, provided my additional amount in your quotation will be 100% safe, immediately payment is made to your company. We would sign an agreement for the security and safety for my secret commission from the (over-invoiced) contarct.

Yours Faithfully,
Dr. (Mrs) Cecilia Samarachi.

Main idea: 1. take the unique message header as numeric data
2. spammer must perform "hard" computation and submit result with message
3. recipient "easily" checks result before accepting message

Main idea: 1. take the unique message header as numeric data
2. spammer must perform "hard" computation and submit result with message
3. recipient "easily" checks result before accepting message

Example: for message data m, compute a and "small" δ such that $a^{2} \equiv m+\delta \quad(\bmod p) \quad$ and $\quad 10^{5}$ divides a.

Note: squareroot modulo p is $(\log p)^{2+o(1)}$, squaring $(\log p)^{1+o(1)}$. See Maple worksheet.

Dwork, Goldberg, Naor design random table-lookup scheme that causes cache faults

NEEDED: non-localizable algorithmic problems whose results are easy to check

My suggestion: let spammer contribute to common good by spinning on a useful factorization, Gröbner basis,... problem

