
Polynomial Factorization: a Success Story

Erich Kaltofen
North Carolina State University

www.kaltofen.us

Letter by Gödel to John von Neumann 1956

Princeton 20./III. 1956
Goedl

Lieber Herr v. Neumann!

Letter by Gödel to John von Neumann 1956

... Such strong speedups
[N to (logN)2] can occur for other finite problems, e.g. when
computing the quadratic residuosity by repeated application of the
reciprocity law.

Letter by Gödel to John von Neumann 1956

... It would be interesting to know, how it is
with that, e.g. about the decision if a number is a prime number, a.
how much in general for finite combinatorial problems the number
of steps can be reduced versus trying all possibilities.

Las Vegas Squareroots Modulo Large p

Problem: given a prime number p > 2 and b ∈ Zp

factor x2−b≡ (x+a)(x−a) (mod p)

Algorithm: pick random u,v ∈ Zp and compute

GCD
(

x2−b, 1+(ux+ v)
p−1

2 mod (x2−b)
)

If

(ux+ v)
p−1

2 mod (x+a)≡ (−ua+ v)
p−1

2
=−1

(ux+ v)
p−1

2 mod (x−a)≡ (ua+ v)
p−1

2
6=−1

the factor x+a is found.

Monte Carlo Primality Testing

Problem: given an odd integer m 6= k j, test if m is prime.

Algorithm: pick random c ∈ Zm and factor x2− (c2 mod m).

If GCD(. . .) = 1 for most c,u,v
we are either very unlucky, or m is composite.

If a≡±c mod m for all c,
we are either very unlucky, or m is prime.

Monte Carlo Primality Testing

Problem: given an odd integer m 6= k j, test if m is prime.

Algorithm: pick random c ∈ Zm and factor x2− (c2 mod m).

If GCD(. . .) = 1 for most c,u,v
we are either very unlucky, or m is composite.

If a≡±c mod m for all c,
we are either very unlucky, or m is prime.

Reason: if m is composite,
there are two a1,a2 6=±c with a2

1 ≡ a2
2 ≡ c2 (mod m)

Example: 37≡ 102 ≡ 172 ≡ 462 ≡ 532 (mod 63)

Best algorithms for Fq[x] : O(ny) arithmetic operations in Fq

x1.8

2.0

2.2

2.4

2.6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

von zur Gathen/Shoup 1992

Berlekamp 1970

Cantor/Zassenhaus 1981

y

log(q) = O(n)x

time = O(n)y

y = 2

y = x + 2

y = x + 1

y = 1.815 + 0.407 x
Kaltofen/Shoup 1995

y = 2.3755

1.3755

Kaltofen/Shoup 1997 (q = 2)k

y = 1 + 0.67 x

n = degree, q = number of field elements

For x = 0, best y = 1.806 [using Huang & Pan 1997]

Factorization in Z[x]

Berlekamp/Zassenhaus 1969 algorithm exponential in worst case

LLL 1982 overcome by lattice basis reduction

Sasaki et al. 1993/van Hoeij 2000 find small low dimen. lattices

Factorization in Z[x]

Sasaki et al. 1993/van Hoeij 2000 find small low dimen. lattices

Idea: Let f ≡ g · h · · ·w (mod pk), α j, β j, . . . , ω j be the roots of
g,h, . . . ,w; compute short column space vector of













C 0 . . . 0 0 0 . . .
0 C . . . 0
...
0 0 . . . C 0 0 . . .

∑ j α j ∑ j β j . . . ∑ j ω j pk 0 . . .

∑ j α2
j ∑ j β2

j . . . ∑ j ω2
j 0 pk

...













←−forces 0 or 1 component

←−second highest coefficients
←−via Newton identities

↑ ↑

adjustment modulo pk

Factorization in Z[x]

From my 1982 survey

“As we will see below, in the worst case step (F5) is the dominant
step in our algorithm. Therefore one is advised to test first whether
the second highest coefficient is absolutely smaller than deg(f)‖ f‖2,
the corresponding factor coefficient bound, or whether the con-
stant coefficient of g(x) divides that of f (x).”

Factorization in Z[x]

From my 1982 survey

“As we will see below, in the worst case step (F5) is the dominant
step in our algorithm. Therefore one is advised to test first whether
the second highest coefficient is absolutely smaller than deg(f)‖ f‖2,
the corresponding factor coefficient bound, or whether the con-
stant coefficient of g(x) divides that of f (x).”

Factorization in Zp[y][x]

Masayuki Noro and Kazuhiro Yokoyama [ISSAC 2002] use
Gröbner walk to obtain fantastic practical performance.

Gao’s 2000 algorithm in C[x,y]

Let f ∈ C[x,y] squarefree

Ruppert’s [1986] differential equation

∂
∂y

(
g
f

)

=
∂
∂x

(
h
f

)

,

{
degx(g) < degx(f),degx(h)≤ degx(f),
degy(g)≤ degy(f),degy(h) < degy(f).

For the factorization f = f1 · · · fr over C we have

g = λ1
f
f1

∂ f1

∂x
+ · · ·+λr

f
fr

∂ fr

∂x
, λi ∈ C,

f = ∏
λ∈C

GCD

(

f ,g−λ
∂ f
∂x

)

.

−→John May’s talk

Hard problems for sparse polynomials ∑i cizei ∈ Z[z]

Plaisted 1977: Let N = ∏n
i=1 pi, where pi distinct primes.

Formula Polynomial Rootset

x j z
N
p j −1 {(e

2πi
N)a | a≡ 0 (mod p j)}

¬xk
zN−1

z
N
pk −1

=
pk−1

∑
i=0

z
iN
pk {(e

2πi
N)b | b 6≡ 0 (mod pk)}

L1∨L2 LCM(Poly(L1),Poly(L2)) Roots(L1)∪Roots(L2)

x j∨¬xk
(z

N
p j pk −1)(zN−1)

z
N
pk −1

(is sparse polynomial)

Hard problems for sparse polynomials ∑i cizei ∈ Z[z]

Plaisted 1977: Let N = ∏n
i=1 pi, where pi distinct primes.

Formula Polynomial Rootset

x j z
N
p j −1 {(e

2πi
N)a | a≡ 0 (mod p j)}

¬xk
zN−1

z
N
pk −1

=
pk−1

∑
i=0

z
iN
pk {(e

2πi
N)b | b 6≡ 0 (mod pk)}

L1∨L2 LCM(Poly(L1),Poly(L2)) Roots(L1)∪Roots(L2)

x j∨¬xk
(z

N
p j pk −1)(zN−1)

z
N
pk −1

(is sparse polynomial)

C1∧C2 GCD(Poly(C1),Poly(C2)) Roots(C1)∩Roots(C2)

Theorem C1∧·· ·∧Cl is satisfiable
⇐⇒ GCD(Poly(C1), . . . ,Poly(Cl)) 6= 1.

Other hard problems [Plaisted 1977/78]

1. Given sequences a1, . . . ,am ∈ Z and b1, . . .bn ∈ Z determine
whether

m

∏
i=1

(zai−1) is not a factor of
n

∏
i=1

(zbi−1).

2. Given a set {a1, . . . ,am} ⊂ Z determine whether
∫ 2π

0
cos(a1θ) · · ·cos(amθ)dθ 6= 0.

Easy problems for sparse polynomials f = ∑i cixei ∈ Z[z]

Cucker, Korian, Smale 1998: Compute root a ∈ Z : f (a) = 0.

Gap idea: if f (a) = 0,a 6=±1 then g1(a) = · · ·= gs(a) = 0
where f (x) = ∑ j g j(x)xu j and u j+1−u j−deg(g j) > b.

Easy problems for sparse polynomials f = ∑i cixei ∈ Z[z]

Cucker, Korian, Smale 1998: Compute root a ∈ Z : f (a) = 0.

Gap idea: if f (a) = 0,a 6=±1 then g1(a) = · · ·= gs(a) = 0
where f (x) = ∑ j g j(x)xu j and u j+1−u j−deg(g j) > b.

Write f (x) = g(x)
︸︷︷︸

deg(g) < d

+ xd+bh(x), ‖ f‖1 = |c1|+ · · ·+ |ct|.

For a 6=±1, h(a) 6= 0: |g(a)| < ‖ f‖1 · |a|d

|ad+bh(a)| > |a|d+b

Easy problems for sparse polynomials f = ∑i cixei ∈ Z[z]

Cucker, Korian, Smale 1998: Compute root a ∈ Z : f (a) = 0.

Gap idea: if f (a) = 0,a 6=±1 then g1(a) = · · ·= gs(a) = 0
where f (x) = ∑ j g j(x)xu j and u j+1−u j−deg(g j) > b.

Write f (x) = g(x)
︸︷︷︸

deg(g) < d

+ xd+bh(x), ‖ f‖1 = |c1|+ · · ·+ |ct|.

For a 6=±1, h(a) 6= 0: |g(a)| < ‖ f‖1 · |a|d

|ad+bh(a)| > |a|d+b

b > log2‖ f‖1 =⇒ |a|d+b > 2b · |a|d > ‖ f‖1 · |a|d =⇒ f (a) 6= 0.

Generalization by H. W. Lenstra, Jr. 1999

Input: a sparse f (x) = ∑t
i=1 cixei ∈ Z[z]

ϕ(ζ) ∈ Z[ζ] monic irred.; let K = Q[ζ]/(ϕ(ζ))
a factor degree bound d

Output: a list of all irreducible factors of f over K of degree ≤ d

Bit complexity is
(

t + log(deg f)+log‖ f‖+log‖ϕ‖
)O(d ·deg(ϕ))

Special case ϕ = 1,d = 1: Algorithm finds all rational roots
in polynomial time.

Open Problem: Roots of Trinomials in Zp

Given a prime number p and integers b,c ∈ Zp, d > e
compute y ∈ Zp such that

yd +bye + c≡ 0 (mod p)

in time
(

log(d)+ log(p)
)O(1)

Alternatively, prove that computing a root in Zp of a polynomial
given by straight-line program over Zp is NP-hard.

Status of My ECCAD’98 Challenge Problems

Problem 1: Nearby multivariate polynomials that factor over C
Status : Open, but many new numerical algorithms

E.g., Lihong Zhi shows some early success with the algorithm
suggested in the paper here with John May

Status of My ECCAD’98 Challenge Problems

Problem 1: Nearby multivariate polynomials that factor over C
Status : Open, but many new numerical algorithms

E.g., Lihong Zhi shows some early success with the algorithm
suggested in the paper here with John May

Problem 2: Collins’s Zolotarev’s problem on a computer
Status : Unknown

Status of My ECCAD’98 Challenge Problems

Problem 1: Nearby multivariate polynomials that factor over C
Status : Open, but many new numerical algorithms

E.g., Lihong Zhi shows some early success with the algorithm
suggested in the paper here with John May

Problem 2: Collins’s Zolotarev’s problem on a computer
Status : Unknown

Problem 3: Characteristic polynomial of a black box matrix
Status : Progress in [Villard CASC 2000]

Improved bit complexity results in dense case
by Kaltofen and Villard 2003.

Status of My ECCAD’98 Challenge Problems

Problem 4: Lattice basis reduction-safe GGH-like cryptosystems
Status : See www.ntru.com, CRYPTO 2003

Status of My ECCAD’98 Challenge Problems

Problem 4: Lattice basis reduction-safe GGH-like cryptosystems
Status : See www.ntru.com, CRYPTO 2003

Problem 5: Gröbner bases via iterative numerical methods
Status : Ongoing work; see [Traverso and Zanoni ISSAC 2002]

Status of My ECCAD’98 Challenge Problems

Problem 4: Lattice basis reduction-safe GGH-like cryptosystems
Status : See www.ntru.com, CRYPTO 2003

Problem 5: Gröbner bases via iterative numerical methods
Status : Ongoing work; see [Traverso and Zanoni ISSAC 2002]

Problem 6: Space and time efficient transposition principle
Status : Substantial progress [Bostan, Lecerf, Schost ISSAC 2003]

Status of My ECCAD’98 Challenge Problems

Problem 7: Plug-and-play and generic programming
methodology for symbolic computation
Status : Open

Surprises from LinBox project using C++ allocators

myAllocator a;

myAllocator::pointer p = a.allocate(1);

a.construct(p,0); // effect: new((void*)p) T(0)

a.destroy(p); // effect: ((T*)p)->~T()

a.deallocate(p,1);

Status of My ECCAD’98 Challenge Problems

Problem 7: Plug-and-play and generic programming
methodology for symbolic computation
Status : Open

Surprises from LinBox project using C++ allocators

myAllocator a;

myAllocator::pointer p = a.allocate(1);

a.construct(p,0); // effect: new((void*)p) T(0)

a.destroy(p); // effect: ((T*)p)->~T()

a.deallocate(p,1);

ANSI/ISO 14882 Section 20.1.5.4
“Implementations of containers ... are permitted to assume that

their Allocator template parameter meets the following two addi-
tional requirements ...
— the typedef members pointer, ... are required to be T* ...”

Status of My ECCAD’98 Challenge Problems

Problem 8: Another “killer” application besides education
Status : 1999 Physics Nobel Prize for SCHOONSCHIP

Subject of ACA 2003 panel discussion

What is an algorithm?

– finite unambiguous list of steps (“control, program”)

– computes a function from D−→ E where D is infinite
(“infinite Turing tape”)

Ambiguity through randomization

– Monte Carlo (BPP): “always fast, probably correct”. Examples:
isprime

Lemma [DeMillo&Lipton’78, Schwartz/Zippel’79]
Let f ,g ∈ F[x1, . . . ,xn], f 6= g,S⊆ F.

Probability(f (a1, . . . ,an) 6= g(a1, . . . ,an) | ai ∈ S)

≥ 1−max{deg(f),deg(g)}/cardinality(S)

sparse polynomial interpolation, factorization, minimal polyno-
mial of a sparse matrix

Do we exactly know what the algorithm computes? E.g., in the
presence of floating point arithmetic?

– Las Vegas (RP): “always correct, probably fast”.
Examples: polynomial factorization in Zp[x], where p� 2.
Determinant of a sparse matrix

De-randomization: conjectured slow-down is within polynomial
complexity.

Shuhong Gao, E. Kaltofen, and Lauder, A., “Deterministic distinct
degree factorization for polynomials over finite fields,” 2001.

M. Agrawal, N. Kayal, N. Saxena, “PRIMES is in P,” 2002.

Kabanets and Impagliazzo [STOC 2003]
If Schwartz/Zippel can be de-randomized (subexponentially), then
there do not exist polynomial-size circuits for NEXP or the per-
manent.

Efficiency dilemma: the higher the confidence in the result, the
more time it takes to compute it.

Black box polynomials

x1, . . . ,xn ∈ F
−−−−−−−−−−−→

f (x1, . . . ,xn) ∈ F
−−−−−−−−−−−−−−→

f ∈ F[x1, . . . ,xn]
F an arbitrary field, e.g., rationals, reals, complexes

Perform polynomial algebra operations, e.g., factorization with

(n ·deg(f))O(1)







black box calls,
arithmetic operations in F and
randomly selected elements in F

Kaltofen and Trager 1988 efficiently construct the following
efficient program:

p1, . . . , pn ∈ F
−−−−−−−−−−−→

Precomputed data including e1, . . . ,en.
Program makes “oracle calls”:

a1, . . . ,an−−−−−−−−−→

f (x1, . . . ,xn)

f (a1, . . . ,an)−−−−−−−−−−→

b1, . . . ,bn−−−−−−−−−→

f (x1, . . . ,xn)

f (b1, . . . ,bn)−−−−−−−−−−→

...
c1, . . . ,cn−−−−−−−−−→

f (x1, . . . ,xn)

f (c1, . . . ,cn)−−−−−−−−−−→

. . .

f (x1, . . . ,xn) = h1(x1, . . . ,xn)
e1 · · ·hr(x1, . . . ,xn)

er

hi ∈ F[x1, . . . ,xn] irreducible.

h1(p1, . . . , pn)−−−−−−−−−−−−−→
h2(p1, . . . , pn)−−−−−−−−−−−−−→

...

hr(p1, . . . , pn)−−−−−−−−−−−−−→

Given a black box

p1, . . . , pn ∈ F
−−−−−−−−−−−→

f (p1, . . . , pn) ∈ F
−−−−−−−−−−−−−−→

f (x1, . . . ,xn) ∈ F[x1, . . . ,xn]
F a field

compute by multiple evaluation of this black box the
sparse representation of f

f (x1, . . . ,xn) =
t

∑
i=1

aix
ei,1
1 · · ·x

ei,n
n , ai 6= 0

Many algorithms that are polynomial-time in deg(f),n, t :

Zippel 1979, 1988; Ben-Or, Tiwari 1988
Kaltofen, Lakshman, Wiley 1988, 1990
Grigoriev, Karpinski, Singer 1988
Kaltofen, Lee, Lobo 2000, 2003
Mansour 1992; Giesbrecht, Lee, Labahn 2003: numerical method

Sparsity with non-standard basis

In place of xe use

(x−a)e shifted basis
x(x+1) · · ·(x+ e−1) Pochhammer basis
Te(x) Chebyshev basis

Algorithms:

Lakshman, Saunders 1992, 1994: Chebyshev, Pochh., shifted
Grigoriev, Karpinski 1993: shifted
Grigoriev, Lakshman 1995: shifted
Lee 2001: Chebyshev, Pochhammer, shifted
Giesbrecht, Kaltofen and Lee 2002, 2003: shifted

FoxBox [Dı́az, Kaltofen 1998] example: determinant of symmet-
ric Toeplitz matrix

det(









a0 a1 . . . an−2 an−1

a1 a0 . . . an−3 an−2
...

an−2 an−3 . . . a0 a1

an−1 an−2 . . . a1 a0









)

= F1(a0, . . . ,an−1) ·F2(a0, . . . ,an−1).

over the integers.

Serialization of factors box of 8 by 8 symmetric Toeplitz matrix
modulo 65521

15,8,-1,1,2,2,-1,8,1,7,1,1,20752,-1,1,39448,33225,984,17332,53283,
35730,23945,13948,22252,52005,13703,8621,27776,33318,2740,
4472,36959,17038,55127,16460,26669,39430,1,0,1,4,20769,16570,
58474,30131,770,4,25421,22569,51508,59396,10568,4,20769,16570,
58474,30131,770,8,531,55309,40895,38056,34677,30870,397,59131,
12756,3,13601,54878,13783,39334,3,41605,59081,10842,15125,
3,45764,5312,9992,25318,3,59301,18015,3739,13650,3,23540,44673,
45053,33398,3,4675,39636,45179,40604,3,49815,29818,2643,16065,
3,46787,46548,12505,53510,3,10439,37666,18998,32189,3,38967,
14338,31161,12779,3,27030,21461,12907,22939,3,24657,32725,
47756,22305,3,44226,9911,59256,54610,3,56240,51924,26856,52915,
3,16133,61189,17015,39397,3,24483,12048,40057,21323

Serialization of checkpoint during sparse interpolation

28, 14, 9, 64017, 31343, 5117, 64185, 47755, 27377, 25604,
6323, 41969, 14, 3, 4, 0, 0, 3, 4, 0, 1, 3, 4, 0, 2, 3, 4, 0, 3, 3,
4, 0, 4, 3, 4, 1, 0, 3, 4, 1, 1, 3, 4, 1, 2, 3, 4, 1, 3, 3, 4, 2, 0, 3, 4, 2,
1, 3, 4, 2, 2, 3, 4, 3, 0, 3, 4, 3, 1, 14, 59877, 1764, 59012, 44468,
1, 19485, 25871, 3356, 2, 58834, 49014, 65518, 15714, 65520, 1,
2, 4, 4, 1, 1

Numerical Randomized (Monte Carlo)
more efficiency, but more efficiency, but
approximate result uncertain result
ill-conditionedness unfavorable inputs:
near singular inputs pseudo-primes,

∑i ∏ j(xi− j),
Coppersmith’s “pathological” matrices

convergence analysis probabilistic analysis
try algorithms on try algorithms
unproven inputs with limited randomness

Numerical + randomized, e.g., LinBox’s matrix preconditioners:
all of the above(?)

Hallmarks of a good heuristic

– Is algorithmic in nature, i.e., always terminates with a result of
possibly unknown validity

– Is a proven complete solution in a more stringent setting, for
example, by restricting the inputs or by slowing the algorithm

– Has an experimental track record, for example, works on 50%
of cases

A Protocol for Spam Prevention [M. Naor et al., CRYPTO 2003]

From: "Dr. Cecilia Samarachi (Mrs)" <C.Samara91Dr@netscape.net>

Date: Sun, 25 May 2003 13:15:39

To: kaltofen@math.ncsu.edu

Dear Friend, VERY URGENT BUSINESS RELATIONSHIP.

...

My Ministry wants to award some major contracts and this contracts have been

approved, implementation is on the pipeline and this contract is on supply

of AGRICULTURAL CHEMICAL AND DRUGS/INJECTIONS FOR COW TREATMENT.

...

1. I want to use this last opportunity while still in the office to extract

some money by inflating this contract to be awarded, and the over-invoiced

amount I will use to establish my own hospital in U.K. or Germany after the

transaction.

2. The inflated money (over-invoiced) from this contract will be immediately

paid (Transfered) to my account in U.K. on confirmation of payment to your

Bank.

3. I sincerely promise to approve your quotations on submission at all cost,

provided my additional amount in your quotation will be 100% safe, immediately

payment is made to your company. We would sign an agreement for the security

and safety for my secret commission from the (over-invoiced) contarct.

...

Yours Faithfully,

Dr.(Mrs) Cecilia Samarachi.

Main idea: 1. take the unique message header as numeric data
2. spammer must perform “hard” computation

and submit result with message
3. recipient “easily” checks result before accepting

message

Main idea: 1. take the unique message header as numeric data
2. spammer must perform “hard” computation

and submit result with message
3. recipient “easily” checks result before accepting

message

Example: for message data m, compute a and “small” δ such that

a2 ≡ m+δ (mod p) and 105 divides a.

Note: squareroot modulo p is (log p)2+o(1), squaring (log p)1+o(1).
See Maple worksheet.

Dwork, Goldberg, Naor design random table-lookup scheme that
causes cache faults

NEEDED: non-localizable algorithmic problems whose results are
easy to check

My suggestion: let spammer contribute to common good by
spinning on a useful factorization, Gröbner basis,... problem

Thanks For the Fireworks

