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Overview

1. Faster bit complexity without Strassen matrix multiplication

2. New speed-ups: the use of block vectors
With Gilles Villard (middle)

3. Determinant computation without division

4. Matrices over polynomials; practicality issues



The LinBox project www.linalg.org

Objective a generic library for exact linear algebra
(“Symbolic MatLab”)

New abstraction mechanism black box matrix

Programming languages C++, Maple, GAP, C (Saclib)

Design principle
genericity through template parameter types (matrix entries)
and black box matrix model (sparseness and structuredness)

Participants 24 current researchers and students in USA, Canada
and France



Fast matrix multiplication

Strassen’s [1969] O(n2.81) matrix multiplication algorithm

m1← (a1,2−a2,2)(b2,1−b2,2)
m2← (a1,1 +a2,2)(b1,1 +b2,2)
m3← (a1,1−a2,1)(b1,1 +b1,2)
m4← (a1,1 +a1,2)b2,2) a1,1b1,1 +a1,2b2,1 = m1 +m2−m4 +m6

m5← a1,1(b1,2−b2,2) a1,1b1,2 +a1,2b2,2 = m4 +m5

m6← a2,2(b2,1−b1,1) a2,1b1,1 +a2,2b2,1 = m6 +m7

m7← (a2,1 +a2,2)b1,1) a2,1b1,2 +a2,2b2,2 = m2−m3 +m5−m7

Problems reducible to matrix multiplication:
linear system solving, determinant [Bunch and Hopcroft 1974],
characteristic polynomial [Keller-Gehrig 1985],...

Coppersmith and Winograd [1990]: O(n2.38)



Life after Strassen matrix multiplication: bit complexity

Linear system solving x = A−1b where A ∈ Z
n×n and b ∈ Z

n :

With Strassen and Chinese remaindering [McClellan 1973]:

Step 1: For prime numbers p1, . . . , pk Do
Solve Ax[ j] ≡ b (mod p j) where x[ j] ∈ Z/(p j)

Step 2: Chinese remainder x[1], . . . ,x[k] to Ax≡ b (mod p1 · · · pk)

Step 3: Recover denominators of xi by continued fractions of
xi

p1 · · · pk
.



Life after Strassen matrix multiplication: bit complexity

Linear system solving x = A−1b where A ∈ Z
n×n and b ∈ Z

n :

With Strassen and Chinese remaindering [McClellan 1973]:

Step 1: For prime numbers p1, . . . , pk Do
Solve Ax[ j] ≡ b (mod p j) where x[ j] ∈ Z/(p j)

Step 2: Chinese remainder x[1], . . . ,x[k] to Ax≡ b (mod p1 · · · pk)
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xi

p1 · · · pk
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Length of integers: k = (n max{log‖A‖, log‖b‖} )1+o(1)

Bit complexity: n3.38 max{log‖A‖, log‖b‖}1+o(1)



With Hensel lifting [Moenck and Carter 1979, Dixon 1982]:

Step 1: For j = 0,1, . . . ,k and a prime p Do
Compute x [ j] = x[0] + px[1] + · · ·+ p jx[ j] ≡ x (mod p j+1)

1.a. b̂ [ j] =
b−Ax [ j−1]

p j
=

b̂ [ j−1]−Ax[ j−1]

p

1.b. x[ j] ≡ A−1b̂ [ j] (mod p) re-using A−1 mod p

Step 2: Recover denominators of xi by continued fractions of
x [k]

i

pk
.
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Step 2: Recover denominators of xi by continued fractions of
x [k]

i

pk
.

With classical matrix arithmetic:
Bit complexity of 1.a: (n ·max{log‖A‖, log‖b‖}+n2 · log‖A‖)1+o(1)

Total bit complexity: (n3 · log‖A‖+n2 · log‖b‖ )1+o(1)



Diophantine solutions
by Giesbrecht, Mulders&Storjohann:
Find several rational solutions.

A(1
2x[1]) = b, x[1] ∈ Z

n

A(1
3x[2]) = b, x[2] ∈ Z

n

gcd(2,3) = 1 = 2 ·2−1 ·3
A(2x[1]− x[2]) = 4b−3b = b

=⇒Can compute integral solutions of sparse linear systems.



Matrix determinant definition

det(Y ) = det(




y1,1 . . . y1,n

y2,1 . . . y2,n
... ...

yn,1 . . . yn,n


) = ∑

σ∈Sn

(
sign(σ)

n

∏
i=1

yi,σ(i)

)
,

where yi, j are from an arbitrary commutative ring,
and Sn is the set of all permutations on {1,2, . . . ,n}.

Interesting rings: Z, K[x1, . . . ,xn], K[x]/(xn)



An important algebraic reduction and de-randomization

Theorem [Strassen 1973, Baur and Strassen 1983]
Suppose you have a Monte Carlo randomized algorithm on a
random access machine that can compute the determinant of an
n×n matrix in D(n) arithmetic operations.

Then for any ε > 0 you have a deterministic algorithm on a ran-
dom access machine that can multiply two n×n matrices in
O(D(n)1+ε) arithmetic operations.



An important algebraic reduction and de-randomization

Theorem [Strassen 1973, Baur and Strassen 1983]
Suppose you have a Monte Carlo randomized algorithm on a
random access machine that can compute the determinant of an
n×n matrix in D(n) arithmetic operations.

Then for any ε > 0 you have a deterministic algorithm on a ran-
dom access machine that can multiply two n×n matrices in
O(D(n)1+ε) arithmetic operations.

By fast LU-factorization we thus obtain a deterministic algorithm
that can compute the determinant of an n×n matrix in
O(D(n)1+ε) arithmetic operations.



Bit complexity of the determinant

With Chinese remaindering: (n · log‖A‖)1+o(1) times matrix mul-
tiplication complexity.

Sign of the determinant [Clarkson 92]: n4+o(1) if matrix has large
orthogonal defect.

Using denominators of linear system solutions [Pan 1989; Abbott,
Bronstein, Mulders 1999]: fast when large first invariant factor.

Using fast Smith form method n3.5+o(1)(log‖A‖)1.5+o(1) [Eberly,
Giesbrecht, Villard 2000]



Wiedemann’s 1986 determinant algorithm

For u,v ∈ F
n and A ∈ F

n×n and consider the sequence of field
elements

a0 = uT v, a1 = uT Av, a2 = uT A2v, a3 = uT A3v, . . .

Let f (A)(λ) = c0 + c1λ+ · · ·+ ckλk ∈ F[λ] with f (A)(A) = 0.
Since uT Aj f (A)(A)v = 0, we have

∀ j ≥ 0: c0a0+ j + c1a1+ j + · · ·+ ckak+ j = 0,

that is, {ai}i=0,1,... satisfies a linear recurrence.
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For u,v ∈ F
n and A ∈ F

n×n and consider the sequence of field
elements

a0 = uT v, a1 = uT Av, a2 = uT A2v, a3 = uT A3v, . . .

Let f (A)(λ) = c0 + c1λ+ · · ·+ ckλk ∈ F[λ] with f (A)(A) = 0.
Since uT Aj f (A)(A)v = 0, we have

∀ j ≥ 0: c0a0+ j + c1a1+ j + · · ·+ ckak+ j = 0,

that is, {ai}i=0,1,... satisfies a linear recurrence.

By the Berlekamp/Massey (1969) we can compute in n1+o(1) op-
erations a minimal linear generator for {ai}i=0,1,...

Wiedemann randomly perturbs A and chooses random u and v; then
det(λI−A)= the minimal recurrence polynomial of {ai}i=0,1,...2n−1.



Baby steps/giant steps algorithm [Kaltofen 1992/2000]

Detail of sequence ai = uT Aiv computation

Let r = d
√

2ne and s = d2n/re.
Substep 1. For j = 1,2, . . . ,r−1 Do v[ j]← Ajv;

Substep 2. Z← Ar;
[O(n3) operations; integer length (

√
n log‖A‖)1+o(1)]

Substep 3. For k = 1,2, . . . ,s Do u[k]T ← uT Zk;
[O(n2.5) operations; integer length (n log‖A‖)1+o(1)]

Substep 4. For j = 0,1, . . . ,r−1 Do
For k = 0,1, . . . ,s Do akr+ j← 〈u[k],v[ j]〉.

Overall bit complexity (n3+1/2 log‖A‖)1+o(1).



Speed-up with fast matrix multiplication

Suppose k×k matrices can be multiplied in O(k2.3755) ring opera-
tions.

Suppose k× k0.29462 can be multiplied in k2+o(1) ring operations.

Overall bit complexity reduces to n3.0281(log‖A‖)1+o(1) bit opera-
tions.



Speed-up with fast matrix multiplication

Suppose k×k matrices can be multiplied in O(k2.3755) ring opera-
tions.

Suppose k× k0.29462 can be multiplied in k2+o(1) ring operations.

Overall bit complexity reduces to n3.0281(log‖A‖)1+o(1) bit opera-
tions.

Speed-up with early termination

If the determinant is small, it is possible to terminate early via
Chinese remaindering [Kaltofen 2002].



Coppersmith’s 1992 blocking

Use of the block vectors x ∈ F
n×β in place of u

y ∈ F
n×β in place of v

ai = xT Aiy ∈ F
β×β, 0≤ i < 2n/β+2.

Find a minimal matrix polynomial generator
c0λ0 + · · ·+ cdλd ∈ F

β×β[λ], d = dn/βe :

∀ j ≥ 0:
d

∑
i=0

a j+ici =
d

∑
i=0

xT Ai+ jyci = 0 ∈ F
β×β

n

n

β

n
β

n

x

z
β

β

Note: A must be in general position, otherwise d > dn/βe and
more sequence elements are needed.



Advantages of blocking

1. Sequence is shorter, therefore intermediate integers are shorter.

2. Parallel computation of each column of the sequence is possible

Disadvantages of blocking

1. Block Berlekamp/Massey step more intricate
and more expensive: β1.3755n1+o(1)

[Beckermann and Labahn 1994]

2. Must compute det(c0 + · · ·+ cdλd), which costs extra.
After preconditioning A, with high probability

det(λI−A) = det(c0 + · · ·+ cdλd).



Sketch of multivariable control theory

From (λI−A)−1 = Iλ−1 +Aλ−2 +A2λ−3 + · · ·
xT(λI−A)−1y(c0 + · · ·+ cdλd) = R(λ) ∈ F[λ]β×β

we obtain a matrix Padé approximation (“realization”)

xT(λI−A)−1y = ∑i aiλi = R(λ)(c0 + · · ·+ cdλd)−1

Denominator on left side: det(λI−A).
Denominator on right side: det(c0 + · · ·+ cdλd).
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From (λI−A)−1 = Iλ−1 +Aλ−2 +A2λ−3 + · · ·
xT(λI−A)−1y(c0 + · · ·+ cdλd) = R(λ) ∈ F[λ]β×β

we obtain a matrix Padé approximation (“realization”)

xT(λI−A)−1y = ∑i aiλi = R(λ)(c0 + · · ·+ cdλd)−1

Denominator on left side: det(λI−A).
Denominator on right side: det(c0 + · · ·+ cdλd).

Theorem 1
The determinant of an integer matrix can be computed in
n2.6973(log‖A‖)1+o(1) bit operations (at β = n0.507 and giant step-
ping s = n0.172).



Division-free determinant complexity

Special sequence for Berlekamp/Massey
In[2]:= S = {1,1,2,3,6,10,20,35,70,126,252,462,924,1716}

In[3]:= BM[S, x]

Discrepancy for r = 1 is 1

L updated to 1, Lambda = 1

Discrepancy for r = 2 is 1

Lambda updated to 1 - x

Discrepancy for r = 3 is 1

2

L updated to 2, Lambda = 1 - x - x

Discrepancy for r = 4 is 0

Discrepancy for r = 5 is 1

2 3

L updated to 3, Lambda = 1 - x - 2 x + x

Discrepancy for r = 6 is 0

Discrepancy for r = 7 is 1

2 3 4

L updated to 4, Lambda = 1 - x - 3 x + 2 x + x

Discrepancy for r = 8 is 0

Discrepancy for r = 9 is 1

2 3 4 5

L updated to 5, Lambda = 1 - x - 4 x + 3 x + 3 x - x



Discrepancy for r = 10 is 0

Discrepancy for r = 11 is 1

2 3 4 5

L updated to 6, Lambda = 1 - x - 5 x + 4 x + 6 x - 3 x

6

- x

Discrepancy for r = 12 is 0

Discrepancy for r = 13 is 1

2 3 4 5

L updated to 7, Lambda = 1 - x - 6 x + 5 x + 10 x - 6 x

6 7

- 4 x + x

Discrepancy for r = 14 is 0



Special case for Wiedemann’s determinant algorithm: for

C =




0 1
0 1

. . . . . .
0 1

c0 c1 . . . cn−2 cn−1




ci = (−1)b(n−i−1)/2c
(b(n+ i)/2c

i

)

and

ai =
[
1 0 0 . . . 0

]
︸ ︷︷ ︸

uT = eT
1

×Ci× v, v =




a0

a1
...

an−1


 , ai =

(
i
bi/2c

)

the algorithm needs no divisions/decisions.

Block algorithm: x =




u
. . .

u


 ,




C
. . .

C


 and y =




v
. . .

v


 .



Strassen’s homotopy:

Compute det(C + z(A−C)) by truncated power series operations
in Z[z]/(zn+1).

Polynomials in z are like integers: length↔ degree.

Theorem 2
The determinant and adjoint of a matrix over a commutative ring
can be computed with O(n2.6973) ring additions, subtractions and
multiplications. The characteristic polynomial with O(n2.8066) ring
additions, subtractions and multiplications.



More recent results

Storjohann 2002: determinant of matrix with polynomial entries
in n2.3755× (input degree)1+o(1) field operations;
possibly generalizable to integers.

Jeannerod and Villard 2003: inverse of matrix with polynomial
entries in (n3× (input degree))1+o(1) straight-line steps.



Practicability

Without Strassen matrix multiplication and Knuth/Schönhage GCD
we have (n3+1/3 log‖A‖)1+o(1) bit operations.

+o(1) from Chinese remaindering, but log2

(
∏

p prime
p≤232

p
)

> 0.5 ·1010.

Poly-logarithmic factors in further speedups are killers:

for n1 = 10000:
log2 n1

n1/3
1

>???
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Without Strassen matrix multiplication and Knuth/Schönhage GCD
we have (n3+1/3 log‖A‖)1+o(1) bit operations.

+o(1) from Chinese remaindering, but log2

(
∏

p prime
p≤232

p
)

> 0.5 ·1010.

Poly-logarithmic factors in further speedups are killers:

for n1 = 10000:
log2 n1

n1/3
1

> 0.616

We have run the algorithm against Gaussian elimination and it
barely wins. However, the block version is highly parallelizable.


