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ABSTRACT
We study the problem of bounding all factorizable polyno-
mials away from a polynomial that is absolutely irreducible.
Such separation bounds are useful for testing whether a nu-
merical polynomial is absolutely irreducible, given a certain
tolerance on its coefficients. Using an absolute irreducibility
criterion due to Ruppert, we are able to find useful sepa-
ration bounds, in several norms, for bivariate polynomials.
We also use Ruppert’s criterion to derive new, more effective
Noether forms for polynomials of arbitrarily many variables.
These forms lead to small separation bounds for polynomials
of arbitrarily many variables.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algebraic Algorithms; G.1.2 [Math-

ematics of Computing]: Numerical Analysis—Approxi-
mation

General Terms
Algorithms

Keywords
multivariate polynomial factorization, absolute irreducibil-
ity, radius of irreducibility, approximate factorization, sym-
bolic/numeric hybrid method, effective Noether irreducibil-
ity forms

1. INTRODUCTION
We consider the problem of factoring a bivariate polyno-

mial f(x, y) ∈ C[x, y], where the actual coefficients of f are
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rational real or complex numbers. By introduction of float-
ing point arithmetic or through a physical measurement, the
input polynomial f is an approximation of a reducible poly-
nomial f̃ ∈ C[x, y], but f itself is irreducible over C; that

is, absolutely irreducible. A factorization f̃ = gh is thus an
approximate factorization of f .

This problem appears to have first been recognized in [14,
concluding remarks], and the optimization version of the
problem, namely computing in polynomial time the near-
est f̃ that factors, is stated as an open problem in [15, 17].
No polynomial-time algorithm is known today, except when
one of the factors g or h is required to have a given constant
degree [11]. However, when f is near a factorizable f̃ , one
can use techniques from numerical analysis, and many re-
searchers have studied this variant [25, 24, 7, 12, 23, 6, 4, 3].
Nagasaka [20] has reversed the problem formulation by giv-
ing algorithms that compute a good separation bound for f
when f is not near a reducible polynomial. The idea is, more
precisely, that one computes a value B(f) ∈ R>0 such that

all f̃ ∈ C[x, y] with ‖f − f̃‖ < B(f) (and deg(f̃) ≤ deg(f))
must remain absolutely irreducible. If B(f) is not too small,
one can then declare f numerically irreducible. The largest
possible B(f) constitutes the distance to the nearest factor-
izable polynomial and can be called the radius of irreducibil-
ity. The norm ‖·‖ is a choice, as different distance measures
can lead to different bounds (cf. [10, 11, 26]). We note that
Nagasaka’s algorithms require that a certain condition on f
is satisfied.

Our paper provides an algorithm for computing separation
bounds B(f) for an arbitrary irreducible bivariate polyno-
mial f . We combine an absolute irreducibility criterion by
Ruppert [21, 22] with the theory of the nearest rank-deficient
matrix. Already Gao [8] realized the powerful algorithmic
implications of Ruppert’s partial differential equation, and
with Rodrigues [9] applied it to absolute irreducibility of
sparse polynomials modulo p. By using the original Eckart
and Young theorem [5] (on complex matrices [27]) we can
quickly obtain separation bounds that apply for the Eu-
clidean distance norm on the coefficient vector of f . Our
technique, applied to the example polynomial in Nagasaka’s
paper, produces a bound several times larger than the one
he computes. We can give an explicit formula in terms of
the smallest singular value of a certain sparse matrix that
has integer multiples of the coefficients of f as entries. How-
ever, like in [9] further computation can adapt to the pos-
sibly sparse structure of f and improve B(f). In order to
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generalize our approach to 1- and ∞-norm, we make use of
the theory of Moore-Penrose pseudo-inverses. Thus all our
algorithms are of polynomial-time complexity.

Aside from the choice of norm, there is the issue of the
deg(f̃). Our bounds limit the degrees in the individual vari-

ables, that is degx(f̃) ≤ degx(f) and degy(f̃) ≤ degy(f)

(rectangular polynomials), but allows for degx(f̃) < degx(f)

or degy(f̃) < degy(f) or both. The latter requires an ad-

ditional argument. However, we do not allow degx(f̃) >
degx(f), for instance, as there is a reducible polynomial of
higher degree arbitrarily close to any given polynomial f ,
namely (εx + 1)f with a suitably small choice of ε.

We will show that for x2 + y2 − 1 the nearest factorizable
polynomial f̃ whose total degree is bounded by 2 has larger
Euclidean distance than the nearest rectangular polynomial.
Lastly, our bounds trivially yield a relative error tolerance
B(f)/‖f‖.

Very small separation bounds were also derived in [16,
Section 7] for an arbitrary number of variables. There, the
bounds are derived by analyzing the largest changes in the
coefficients that keeps a Noether form non-zero. Ruppert’s
approach can be employed to get smaller, in degree and
coefficient size, Noether forms, which via techniques in [16]
can be extended to an arbitrary number of variables. This
paper derives these new Noether forms for arbitrarily many
variables. To our knowledge, these are the most effective
known Noether forms. These can be used to find separation
bounds for an arbitrary number of variables which are quite
small, but better than those in [16].

2. IRREDUCIBILITY TEST
A bivariate polynomial f , with degx f = m, and degy f =

n, can be tested for absolute irreducibility using the follow-
ing fact due to Ruppert [22].

Fact 1. Suppose f ∈ K[x, y], where K is an arbitrary
field of characteristic 0, then f is absolutely irreducible, that
is irreducible over the algebraic closure of K, if and only if
there are no non-trivial solutions to

∂

∂y

g

f
=

∂

∂x

h

f
(1)

where degx g ≤ m−1, degy g ≤ n, degx h ≤ m, and degy h ≤
n − 2.

Note that the degree bounds are chosen to exclude the
solution g = ∂f/∂x, h = ∂f/∂y.

Notice that by using the quotient rule (1) can be rewritten
as

f
∂g

∂y
− g

∂f

∂y
+ h

∂f

∂x
− f

∂h

∂x
= 0 (2)

which gives 4mn linear equations in the coefficients of g and
h. Thus we have a (4mn)× (2mn + n− 1) matrix R(f), the
Ruppert matrix of f , which is full rank if and only if f is
absolutely irreducible.

Example 1. Given the polynomial

ϕ = c2,2x
2y2 + c2,1x

2y + c1,2xy2 + c2,0x
2

+ c0,2y
2 + c1,1xy + c1,0x + c0,1y + c0,0,

the matrix R(ϕ) is 12 × 9 with zero rows removed (see Fig-
ure 1 on page 163). If we specialize to f = x2 + y2 − 1 we

get a 12 × 9 matrix, with two zero rows which has rank 9
since f is absolutely irreducible. Note that the symmetry of
f is not being exploited here.

Given a matrix A ∈ Cµ×ν the Frobenius norm will be
denoted as ‖A‖F and is equal to the 2-norm of the matrix
considered as a vector. That is ‖A‖2

F =
∑

i,j |Ai,j |2.
We now state a classic linear algebra theorem by Eckart

and Young [5], which is proved for complex matrices in a
book by G. W. Stewart [27, Theorem 6.7].

Fact 2. Let A ∈ Cµ×ν be a matrix of rank r. If B ∈
Cµ×ν has rank strictly less than r, then ‖A − B‖F ≥ σ(A),
where σ(A) denotes the smallest positive singular value of
the matrix A. Furthermore, there exists B of rank r − 1 so
that ‖A − B‖F = σ(A).

Let us now suppose that f is irreducible and both fM and
f̃ = f − fM have the same degrees as f in both variables.
Here f̃ denotes the perturbed polynomial and fM the pertur-
bation. Hence R(fM) and R(f̃) have the same dimensions as

R(f), thus R(fM) = R(f − f̃) is equal to R(f) − R(f̃). If f̃

is factorizable, then R(f̃) must be rank deficient. Because

R(f) is of full rank and R(f̃) is rank deficient, Fact 2 implies

‖R(fM)‖F ≥ σ(R(f)). (3)

Note that the restriction that fM has the same degrees as f
is artificial, and we will introduce notation later which will
allow fM to have smaller degrees.

It should be noted that although the estimate (3) is sharp
for general matrices, due to the structure of the Ruppert
matrices, it may be that

min
degx(f̃)=m,degy(f̃)=n

rank R(f̃)<2mn+n−1

‖R(f) − R(f̃)‖F � σ(R(f)).

Parts of the following lemma and lemma 5 are similar to
parts of the proof of Theorem 6 in [9] which are used to
bound the norms of the rows of a modified Ruppert matrix.

Lemma 1. All the entries of R(f) are integer multiples of
coefficients of f , or are equal to 0. In fact, if f =

∑

ci,jx
iyj ,

then at most 2mn−m multiples of ci,j appear in R(f), and
each multiple, aci,j , satisfies: |a| ≤ max{m, n}.

Proof. First, let g =
∑

ui,jx
iyj , and h =

∑

vi,jx
iyj be

the polynomials with unknown coefficients in (1). Now, no-
tice that an entry of R(f) is a coefficient of either us,t xiyj

or vs,t xiyj in (2). Next, for a given us,t xiyj , we determine
its coefficient. The only terms containing us,t are us,tx

syt

appearing in g, and t us,t xsyt−1 appearing in ∂g/∂y. The
term ck,l xkyl = ci−s,j−t+1x

i−syj−t+1, appearing in f , and
lck,lx

kyl−1 appearing in ∂f/∂y are the only two terms which
will multiply with either of the terms containing us,t to re-
sult in a term containing xiyj . Thus, (t− l) ck,l is the coeffi-
cient of us,t xiyj , and similarly, (k − s) ck,l is the coefficient
of vs,t xiyj .

Let us look at how many times a given ck,l can appear in
a column of R(f), i.e. how many times it can appear multi-
plied by a given us,t or vs,t in (2). It is clear that ck,lus,t can
appear at most twice, once in f ∂g/∂y and once in g ∂f/∂y.
However, as seen above, these two will both be coefficients
of xk+syl+t−1. Hence the only term containing both ck,l and
us,t is (t−l) ck,l us,t xi−syj−t−1, and similarly, the only term
containing both cl,k and vs,t is (k − s) ck,l vs,t xi−s−1yj−t.
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Figure 1: The matrix of the linear equations in (2) for a
symbolic polynomial with degree two in x and y.

Thus, there is only one multiple of ci,j in each column, and
|k − s|, |l − t| ≤ max{m, n}.

Notice that there is not a multiple of ci,j in every col-
umn. For j = 0, ci,0uk,0 would have to be a coefficient
of xi+ky−1, so it does not appear in (2) for any k. Sim-
ilarly for i = 0, c0,ju0,l does not appear in (2) for any l.
The term j ci,juk,jx

i+ky2j−1 appears in both f ∂g/∂y and
g ∂f/∂y, hence cancels, and does not appear in (2). So, a
given ci,j does not appear in the columns corresponding to
uk,j for any k. Similarly, a given ci,j does not appear in the
columns corresponding to vi,l for any l. Therefore, ci,j can
appear in at most 2mn − m columns.

As a consequence of the proof of Lemma 1, we see that
all the terms containing y2n−1 vanish. So in fact the matrix
R(f) has dimensions at most (4mn − 2m) × (2mn + n − 1)
after the zero rows are removed.

Suppose ϕ is a polynomial with symbolic coefficients with
degx(ϕ) = degx(f) = m and degy(ϕ) = degy(f) = n. For
a perturbation fM with degx(fM) ≤ m and degy(fM) ≤ n we

consider the matrix R(ϕ)
∣

∣

ϕ=fM
, which denotes the Ruppert

matrix of ϕ with the symbolic coefficients set to their values
in fM. However, notice that R(ϕ)

∣

∣

ϕ=fM
is only the same as

R(fM) if ϕ has the same degrees as fM, and if that is not the
case, then Fact 1 does not apply.

Now, applying Lemma 1 to R(ϕ)
∣

∣

ϕ=fM
we have

‖R(ϕ)
∣

∣

ϕ=fM
‖2

F =
∑

1≤i≤4mn

1≤j≤2mn+n−1

|
(

R(ϕ)
∣

∣

ϕ=fM

)

i,j
|2

=
∑

1≤i≤4mn

1≤j≤2mn+n−1

|ai,jbki,j
|2

≤ max{a2
i,j}

∑

1≤i≤4mn

1≤j≤2mn+n−1

|bki,j
|2

≤ (max{m, n})2(2mn − m)‖fM‖2
2, (4)

where bk is a coefficient of fM or is zero.

Theorem 1. If f ∈ C[x, y] is irreducible, f̃ ∈ C[x, y] does
not have greater degree than f in either variable, and

‖f − f̃‖2 <
σ(R(f))

max{m, n}
√

2mn − m
,

then f̃ is irreducible.

Proof. We begin with the case that f̃ has the same de-
grees in each variable as f . By (4) applied to fM = f − f̃ we
have

‖R(f) − R(f̃)‖F = ‖R(ϕ)
∣

∣

ϕ=f−f̃
‖F = ‖R(ϕ)

∣

∣

ϕ=fM
‖F

≤ max{m, n}
√

2mn − m ‖fM‖2

< σ(R(f)). (5)

Now, since f is irreducible, R(f) is full rank by Fact 1.

Hence, Fact 2 with (5) implies that R(f̃) must also be full

rank. Thus, f̃ is irreducible, again by Fact 1.
We now assume that f̃ has smaller degree than f . In order

to derive a contradiction, let us assume now that f̃ = gh
where g, h are non-unit factors, and

‖f − f̃‖2 <
(

max{m, n}
√

2mn − m
)−1

σ(R(f)).

Now we can construct

˜̃
f = (ε (xs + yt) + g) h = ε (xs + yt) h + f̃

with s = degx(f)− degx(h) and t = degy(f)− degy(h), and
ε ∈ R>0 chosen so that

ε <

(

max{m, n}
√

2mn − m
)−1

σ(R(f)) − ‖f − f̃‖2

‖(xs + yt)h‖2
.
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Furthermore, we restrict ε so that
˜̃
f has the same degree

as f . This is possible because there are at most two values
of ε which can cause ε (xs + yt) h + f̃ to have lower degree
than f , while we have infinite choice for ε which satisfy the

inequality. Thus,
˜̃
f has the same degree as f , but

‖f − ˜̃
f‖2 ≤ ‖f − f̃‖2 + ε ‖(xs + yt) h‖2

<
(

max{m, n}
√

2mn − m
)−1

σ(R(f)),

which contradicts the first part of the proof.

Note that this theorem does not hold if we allow the de-
grees of f̃ to be greater than those of f . For all f and ε > 0,
f̃ = (ε x+1)f is a polynomial of higher degree than f which
is reducible. But,

‖f̃ − f‖ = ‖ε x f‖ = ε ‖f‖
which, by choosing ε small enough, can be made arbitrarily
small.

In practice, it is possible to get a better denominator than
max{m, n}

√
2mn − m by forming the Ruppert matrix for

the polynomial with symbolic coefficients having the same
degrees as f , computing the square of its Frobenius norm,
and finding the largest coefficient of a |ci,j |2. This can be
seen in the following examples.

Example 2. (bounds vs. true distance.) Using the
notation of Example 1, consider again the absolutely irre-
ducible polynomial f = x2 + y2 − 1. Computing ‖R(ϕ)‖2

F ,
we get:

15 |c0,2|2 + 15 |c2,2|2 + 15 |c2,0|2 + 12 |c1,2|2 + 9 |c2,1|2

+ 6 |c1,1|2 + 15 |c0,0|2 + 12 |c1,0|2 + 9 |c0,1|2 .

The largest coefficient is 15 (the bound predicted in the
theorem is 24), and the smallest singular value of R(f) is
σ(R(f)) ≈ 0.613616017571412930, so a perturbation which
makes f singular must have 2-norm at least σ(R(f))

/√
15 ≈

0.1584349745.
This polynomial is small enough that it is possible to find

the closest factorizable polynomial (with real coefficients,
and same total degree) by using parametric least squares as
in [11]. This involves taking the equation

f − (a1 x + a2 y + a3)(x + b1 y + b2) = 0 (6)

and considering it as a set of linear equations in a1, a2, and
a3. We can write this as a linear system: Ma = F , where
the matrix M has coefficients in R[b1, b2], and F is a vector
of the coefficients of f . Now the residual of the least squares
solution of this system,

q = ‖F − M(MT M)−1MT F‖2,

is a rational function in b1 and b2. We can find a global min-
imum of q by taking the partial derivatives of its numerator,
q1 and q2, and solving Resb2(q1, q2) = 0. Once we have a real
solution b1 = α1, we can solve gcd(q1(α1, b2), q2(α1, b2)) = 0
for corresponding real α2’s. We check all such pairs, and
substitute the pair which leads to the smallest residual back
into M . We thus obtain a linear system over R, so we can
compute the least squares solution. Doing so, we find that
closest reducible polynomials with real coefficients and total
degree 2 are at least distance 1 from f , for example,

f̃ = (x − 1)(x + 1).

The closest reducible polynomial with degree 2 in x and
y is closer. For example, the following f̃ is only distance
0.6727223250 away from f :

f̃ = (0.4906834y2 + 0.8491482x− 0.9073464)(x + 1.214778).

Finding the closest factorizable polynomial with complex co-
efficients is computationally more difficult, since each pa-
rameter above turns into two parameters, one each for the
real and the imaginary parts.

Example 3. (comparison with [20].) Apply the The-
orem 1 to Nagasaka’s [20] Example 1:

F = (x2 + yx + 2y − 1)(x3 + y2x − y + 7) + 0.2x

Here, R(F ) is a 47×32 matrix after removing the zero rows.
Forming the symbolic polynomial with the same degrees and
computing its Frobenius norm, we get:

140|c0,1|2 + 140|c0,2|2 + 180|c0,3|2 + 92|c1,1|2 + 132|c1,3|2

+ 68|c2,1|2 + 92|c1,2|2 + 68c2,2|2 + 108|c2,3|2 + 68|c3,1|2

+ 92|c4,1|2 + 108|c3,3|2 + 68|c3,2|2 + 180|c5,3|2 + 140|c5,2|2

+ 132|c4,3|2 + 140|c5,1|2 + 92|c4,2|2 + 108|c3,0|2 + 108|c2,0|2

+ 132|c1,0|2 + 180|c0,0|2 + 180|c5,0|2 + 132|c4,0|2

The largest coefficient is 180, so by the theorem, a perturba-
tion with 2-norm at least σ(R(F ))

/√
180 is needed to make

F reducible. We compute σ(R(F )) ≈ 0.01030023214, so the
bound is 0.0007677339751. The norm ||f ||2 ≈ 19.85044080,
and dividing the absolute bound by this gives a relative
bound of 0.00003867591571, which is about 7 times better
than Nagasaka’s relative bound of 0.00000553.

3. OTHER NORMS
Similar results as those in the previous section can be had

for the ∞- and 1-norms of polynomials. First, we need to
introduce a few linear algebra concepts. We will write ‖A‖p,q

for the matrix operator norm defined as maxx6=0 ‖Ax‖p/‖x‖q

or equivalently as max‖x‖q=1 ‖Ax‖p. By the definition of the
norm, it follows that for all x,

‖Ax‖p ≤ ‖A‖p,q‖x‖q.

When p = q we get the the standard matrix operator norms,
some of which can be computed quite easily. The 1-norm
for example,

‖A‖1 = ‖A‖1,1 = max
j

{

∑

i,j

|Ai,j |
}

,

the largest absolute column sum. The ∞-norm as well,

‖A‖∞ = ‖A‖∞,∞ = max
i

{

∑

i,j

|Ai,j |
}

,

the largest absolute row sum. The height of a matrix can
also be represented as one of these norms.

Lemma 2. ‖A‖∞,1 = H(A) = maxi,j{|Ai,j |}.
Proof. Clearly H(A) ≤ ‖A‖∞,1 since if z is the unit

vector with a 1 in the position of the column containing the
entry of largest absolute value, and zeros elsewhere, then
‖Az‖∞ is just the maximum of the absolute values of entries
in that column.
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Now if ‖x‖1 = 1, then

|(Ax)i| ≤
∑

j

|Ai,j ||xj |

≤ max
j

{|Ai,j |}
∑

j

|xj | = max
j

{|Ai,j |}.

So

‖A‖∞,1 = max
‖x‖1=1

‖Ax‖∞ ≤ max
i,j

{|Ai,j |} = H(A).

There seems to be no explicit formula for ‖A‖1,∞, but we
can get an upper bound which will be useful later.

Lemma 3. ‖A‖1,∞ ≤ ∑

i,j |Ai,j |
Proof. If ‖x‖∞ = 1, then

‖Ax‖1 =
∑

i

∣

∣

∣

∑

j

Ai,jxj

∣

∣

∣
≤

∑

i

∑

j

|Ai,j ||xj |

≤ max
j

{|xj |}
∑

i,j

|Ai,j | =
∑

i,j

|Ai,j |.

Notice that the bound is achieved when A has, for exam-
ple, all positive real entries and it is possible to find small
examples which have norm strictly less than the bound.

Following [1], we will write A† to indicate the Moore-
Penrose pseudo-inverse of A. That is, the unique matrix
such that (i) AA†A = A, (ii) A†AA† = A†, (iii) (AA†)H =
AA† and (iv) (A†A)H = A†. For a given matrix B, by BH we
mean the Hermitian (conjugate transpose) of B. In partic-
ular, we are interested in the following property of A† (see
[1, p. 9]): if x is in the row space of A then A†Ax = x.

The following is a slight variation of a theorem found in
[1, Prop. 10.4.2] which is a generalization of a theorem by
Gastinel for invertible matrices [13, p. 775]. This is essen-
tially Fact 2 for operator norms.

Lemma 4. Suppose A has full rank and A has more rows
than columns. If A − AM has lower rank than A, then

‖AM‖p,q ≥ 1
/

‖A†‖q,p.

In this case AHA is invertible and A† = (AHA)−1AH.

Proof. If A − AM is rank deficient, then there is a z so
that (A − AM)z = 0 or, Az = AMz. Also note that since
A has full rank, its row space contains all vectors of the
appropriate dimension, including z. Now compute:

‖AM‖p,q ≥ ‖AMz‖p

/

‖z‖q = ‖Az‖p

/

‖z‖q

= ‖Az‖p

/

‖A†Az‖q ≥ ‖Az‖p

/

(‖A†‖q,p‖Az‖p)

= 1
/

‖A†‖q,p.

The formula for A† is classical (see for example [1, Theo-
rem 1.3.2]).

Note that since R(f) always has more rows than columns,
Lemma 4 applies. We still need analog of Lemma 1, however.

Lemma 5. If f =
∑

ci,jx
iyj then:

1. There is at most one multiple of ci,j in each column of
R(f).

2. There are at most two multiples of ci,j in each row of
R(f).

Proof. The first part is shown in the proof of Lemma 1.
For the second part, examine the coefficient of a given

xiyj in (2):

(

∑

k+s=i

l+t=j−1

ck,l t us,t

)

−
(

∑

k+s=i

l+t=j−1

l ck,l us,t

)

+
(

∑

k+s=i−1
l+t=j

k ck,l vs,t

)

−
(

∑

k+s=i−1
l+t=j

ck,l s vs,t

)

.

Clearly, a given cl,k can appear at most four times in the
coefficient, once in each sum. But, by looking at the indices,
it can be seen that all us,t and vs,t corresponding to a given
ck,l have the same indices. Hence, ck,l appears at most twice
in any row of R(f), either as (t − l) ck,l us,t, or as (k −
s) ck,l vs,t.

Using the previous Lemma 5 and Lemma 1 we can find
the following bounds (cf. (4)):

‖R(ϕ)
∣

∣

ϕ=fM
‖1 ≤ max{m, n}‖fM‖1 (7)

‖R(ϕ)
∣

∣

ϕ=fM
‖∞ ≤ 2 max{m, n}‖fM‖1 (8)

‖R(ϕ)
∣

∣

ϕ=fM
‖∞,1 ≤ max{m, n}‖fM‖∞. (9)

Theorem 2. If f ∈ C[x, y] is an irreducible polynomial,

and f̃ ∈ C[x, y] is a factorizable polynomial of equal or lesser
degrees, then:

1. ‖f − f̃‖1 ≥ (max{m, n} ‖R(f)†‖1)
−1

2. ‖f − f̃‖1 ≥ (2max{m, n} ‖R(f)†‖∞)−1

3. ‖f − f̃‖∞≥ (max{m, n} ‖R(f)†‖1,∞)−1

≥ (max{m, n}
∑

i,j |R(f)†i,j |)−1

Proof. Begin by assuming that f and f̃ have the same
degrees. If there is a constant C so that

‖R(ϕ)
∣

∣

ϕ=fM
‖p,q ≤ C‖fM‖r (10)

then since f̃ is factorizable, Lemma 4 and (10) imply

‖R(f)†‖−1
q,p ≤ ‖R(f) − R(f̃)‖p,q = ‖R(ϕ)

∣

∣

ϕ=f−f̃
‖p,q

= ‖R(ϕ)
∣

∣

ϕ=fM
‖p,q ≤ C‖fM‖r.

Hence,

‖fM‖r = ‖f − f̃‖r ≥ (C‖R(f)†‖q,p)−1.

Using (7) for (10) proves part 1 of the theorem. Similarly,
(8) and (9) prove parts 2 and 3 respectively. Thus all the
parts of the theorem are proven when the degrees are the
same. If the degrees of f̃ are smaller, the same argument as
used in the proof of Theorem 1 will work here as well.

In the above theorem, we give 2 bounds for the 1-norm,
because the bound in part 2 can be better than the one
in part 1. For example, the bound on the 1-norm of f =
x2y2 + 0.26y + 1000 computed as in Example 4 below is
better if we use the ∞-norm of its Ruppert matrix.

Notice that this theory does not give any better bound for
the 2-norm. However, it can be used to derive Theorem 1
using the matrix 2-norm ||·||2 = ||·||2,2. Since for any matrix
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A, ||A†||−1
2 = σ(A), and ||A||2 ≤ ||A||F . Hence (4) can be

used for the bound (10) so if f̃ is reducible,

‖f − f̃‖2 ≥ (max{m, n}
√

2mn − m ‖R(f)†‖2)
−1

= (max{m, n}
√

2mn − m)−1σ(R(f)).

We do not give explicit bounds using other matrix p-norms
because it seems, in general, difficult to relate the entries of
a matrix A to the value of the norm ||A||p,q.

We add that, unlike the bound in Theorem 1, the bounds
in Theorem 2 are rational in the real and imaginary parts of
the coefficients of f by virtue of the formula for R(f)† given
in Lemma 4 and the explicit formulas for the 1- and ∞-
norms for matrices. Therefore, one may derive bounds using
Cramer’s rule that depend solely on the degrees of f and
||f ||∞ when, for example, the coefficients of f are integers
(cf. [16, Section 7]).

Example 4. (example 2 with other norms.) Once
again, consider the polynomial f = x2 + y2 − 1. After com-
puting the pseudo-inverse of R(f), a task which is accom-
plished easily with the MatrixInverse command in Maple
version 8, we compute its various norms.

‖R(f)†‖1 = 5/2, ‖R(f)†‖∞ = 2, ‖R(f)†‖1,∞ ≤ 9.

The maximum multiple of an absolute column sum is 2.
Observation of a symbolic R(f) shows that the maximum
multiple of an absolute row sum is 3, less than the worst
case of 4 predicted above, and the maximum multiple of an
entry is 2. Hence we get that the ∞-norm of a perturbation
of f must be greater than 1/18 ≈ 0.05556, and the 1-norm
must be greater than 1/5 = 0.2 (from the matrix 1-norm),
and 1/6 ≈ 0.16667 (from the matrix ∞-norm).

Example 5. (example 3 with other norms.) We can
also compute the bounds on other norms for the polynomial
in Example 3. Computing the pseudo-inverse of R(f) we
get the norms

‖R(f)†‖1 ≈ 113.598, ‖R(f)†‖∞ ≈ 270.393,

‖R(f)†‖1,∞ ≤ 1192.372.

These lead to the bounds:

‖fM‖1 > 0.001760594950 and ‖fM‖∞ > 0.0001677328901

if f − fM is factorizable.

We note that the bounds given for the 1-norm in The-
orem 2 can be transferred to the 2-norm case via ‖w‖1 ≤√

d ‖w‖2 for any w ∈ Cd. For f̃ ∈ C[x, y] we have

‖f − f̃‖2 <
(
√

(m + 1)(n + 1) max{m, n}×
min{‖R(f)†‖1, 2‖R(f)†‖∞}

)−1
(11)

implies f̃ is irreducible. It should be noted that the bound
in (11) is almost certainly worse than the bound in Theo-
rem 1. For the polynomial in Examples 3 and 5, (11) yields
0.000359 which is about half as large as the bound derived
using Theorem 1. However, as discussed in the paragraph
before Example 4, (11) can be used to derive a bound for
the 2-norm that depends solely on the degrees and norm
of f . Of course, the same applies to the ∞-norm part of
Theorem 2, but the bound seems smaller (for Example 3 we
obtain 0.000167).

4. SEVERAL VARIABLES
Now we shall derive new Noether irreducibility forms us-

ing Fact 1. These new forms will lead to a separation bound
for polynomials with more than two variables. Fact 1 ap-
plies only to bivariate polynomials, but we can derive forms
for polynomials with more variables by first reducing to two
variables using the following fact. First, suppose that

f =
∑

e1+...+eη≤d

ce1,...,eη xe1

1 · · ·xeη
η ∈ K[x1, . . . , xη],

where K is a field of characteristic 0.

Fact 3. (Lemma 7 in [16]) Let

L = K(v1, . . . , vη, w2, . . . , wη, z2, . . . , zη),

where v1, . . . , vη, w2, . . . , wη, z2, . . . , zη are indeterminants.
The bivariate polynomial

f̂(x, y) = f(x + y + v1, w2x + z2y + v2, . . .

. . . , wηx + zηy + vη) ∈ L[x, y]

is irreducible over the algebraic closure of L if and only if f
is irreducible over the algebraic closure of K.

Note that in [16], the substitution for x1 is x + v1, but
the proof follows through using x + y + v1 as given above.
The advantage of the latter substitution is that degx f̂ =

degy f̂ = tdeg f̂ = tdeg f where by tdeg we mean the total
degree. This allows us to formulate the following theorem
using total degree even though Fact 1 depends on the rect-
angular degrees.

Theorem 3. (cf. Theorem 7 in [16]) There exists a
finite set of polynomials

Φt ∈ Z[. . . , be1,...,eη , . . .] =: E, 1 ≤ t ≤ T

where the be1,...,eη ’s are indeterminants, so that

∀t : Φt(. . . , ce1,...,eη , . . .) = 0

⇐⇒ f is not absolutely irreducible or tdeg f < d.

Furthermore, for all t,

tdeg Φt ≤ 2d2 + d =: D and

‖Φt‖1 ≤ (2d)4d2+3d+η =: B. (12)

Proof. The proof will closely follow the proof of Theo-
rem 7 in [16]. First, write

ϕ =
∑

e1+...+eη≤d

be1,...,eη xe1

1 · · ·xeη
η ,

and

ϕ̂ = ϕ(x+y+v1, w2x+z2y+v2, . . . , wηx+zηy+vη) ∈ L′[x, y]

where L′ = E(v1, . . . , vη, w2, . . . , wη, z2, . . . , zη).
Let {∆s} be the set of all maximal minors of the matrix

R(ϕ̂). Define the set

S := {τ ∈ E | τ is a coefficient of a term in

v1, . . . , vη, w2, . . . , wη, z2, . . . , zη of some ∆s}.
We shall define the set of irreducibility forms as follows:

{Φt = be1,...,eη τ ∈ E | e1 + . . . + eη = d, τ ∈ S}.
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Now let us substitute the coefficients of f (the ce1,...,eη ’s)
for the indeterminants be1,...,eη . Note that one of our forms
Φt(. . . , ce1,...,eη , . . .) = 0 if and only if τ(. . . , ce1,...,eη , . . .) =
0 for τ ∈ S or ce1,...,eη = 0 for all e1+. . .+eη = d. The condi-
tion ce1,...,eη = 0 for all e1+. . .+eη = d holds if and only if f
does not have total degree d. Notice, τ(. . . , ce1,...,eη , . . .) = 0
for all τ ∈ S if and only if ∆s(. . . , ce1,...,eη , . . .) = 0. This is

true if and only if R(ϕ̂
∣

∣

ϕ̂=f̂
) does not have full rank. Now,

if tdeg f = d, then degx f̂ = degx ϕ̂ = degy f̂ = degy ϕ̂ = d,

hence, R(f̂) = R(ϕ̂
∣

∣

ϕ̂=f̂
). Thus, by Fact 1, R(f̂) is rank

deficient if and only if f̂ factors over the algebraic closure of
L which is true if and only if f factors over C, by Fact 3.

Now we establish the bounds on Φt. Notice that all the
coefficients of terms xiyj in ϕ̂ are linear in the be1,...,eη ’s,
hence the entries of R(ϕ̂) are also linear in the be1,...,eη ’s by
Lemma 1. Thus, any minor of R(ϕ̂) will have total degree in
the be1,...,eη ’s at most 2d2 +d− 1, the number of columns of
R(ϕ̂). Therefore the total degree of any Φt will be at most
2d2 + d. To bound the 1-norm, note that each coefficient of
ϕ̂ has 1-norm at most

(

d + η
η

)

3d =: A ≤ (2d)d+η.

Therefore, a minor of R(ϕ̂) has 1-norm at most

A (2d2 + d − 1)(2d2 + d − 1)! ≤ (2d)d+η(2d2 + d − 1)2d2+d

≤ (2d)4d2+3d+η

and ‖Φt‖1 must certainly be smaller than this as well.

The bounds B and D on these new Noether irreducibility
forms lead to a separation bound for polynomials with more
than two variables. For the following, we will assume that
f ∈ Z[x1, . . . , xη], though similar results can be derived for f
which have coefficients in Z[ξ] where ξ is an algebraic integer
over Q.

Fact 4. (Theorem 10 in [16]) If f̃ ∈ C[x1, . . . , xη] has
the same total degree as f and

‖f − f̃‖∞ < 2−(d+η+1)D−1B−1(‖f‖∞ + 1)−D

then f̃ is irreducible.

Using the B and D above, we get

‖f − f̃‖∞ < (2d)−(4d2+4d+2η+1)(‖f‖∞ + 1)−2d2−d. (13)

Note that the Noether forms in [16] have bounds

D′ = 12d6 and B′ = (2d)12d7+(12η+36)d6

(14)

which are much larger than the bounds (12), but the forms
in [16] apply to fields of positive characteristic as well. The
bounds (14) also lead to the much smaller separation bound

‖f − f̃‖∞ < (2d)−(12d7+29ηd6)(‖f‖∞ + 1)−12d6

.

5. CONCLUDING REMARKS
We have given an efficient algorithm for computing a dis-

tance bound that separates an irreducible bivariate polyno-
mial f from a polynomial f̃ that has complex coefficients
and factors over the complex numbers. Trivially, our bound
also applies when the f̃ is restricted to have real coefficients.

However, our approach seems to yield no better bounds in
the latter case. Other restrictions for the coefficients of f̃
seem natural, like keeping leading coefficients 1 (monicity)
or preserving zero coefficients (sparsity). For those cases we
can gain slight improvements in separation (see Example 2).
More improvements for sparse polynomials may be obtained
by adapting the results in [9] which can be used to further
reduce the size of R(f) when f is sparse.

We have generalized Fact 1 to more than two variables,
now as a system of partial differential equations. Clearly,
our generalization improves on the separation bounds (13)
derived for polynomials with more than two variables. These
results will be published in the future. It is not clear, how-
ever, if they can lead to more effective Noether Forms.

It would be important to have a theory similar to Fact 2
and Lemma 4 for matrices with polynomial entries. In our
case, separation from singularity for matrix polynomials ap-
plied to the matrix R(f̂) in Fact 3 may improve upon the
determinantal bound. It seems likely that this would pro-
duce more effective Noether forms.

We have also tested an iterative method, similar to the
one described in [2], for computing nearby rank-deficient
Ruppert matrices. While the iteration converges, it does
not necessarily converge to the closest rank-deficient ma-
trix with Ruppert structure. This still might be useful in
approximate factoring by using Gao’s algorithm [8], but be-
cause we can only get a numerically rank-deficient Ruppert
matrix, a robust method for computing approximate bivari-
ate GCD’s is needed. Our experiments with this can be
found at http://www.math.ncsu.edu/~jpmay/issac03/.
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