
Early Termination in Sparse Interpolation

Algorithms

Erich Kaltofen a, Wen-shin Lee b

aDepartment of Mathematics, North Carolina State University
Raleigh, North Carolina 27695-8205, U.S.A.

bSchool of Computer Science, University of Waterloo
Waterloo, Ontario N2L 3G1, Canada

Abstract

A probabilistic strategy, early termination, enables different interpolation algo-
rithms to adapt to the degree or the number of terms in the target polynomial
when neither is supplied in the input. In addition to dense algorithms, we imple-
ment this strategy in sparse interpolation algorithms. Based on early termination,
racing algorithms execute simultaneously a dense and a sparse algorithm. The racing
algorithms can be embedded as the univariate interpolation substep within Zippel’s
multivariate method. In addition, we experimentally verify some heuristics of early
termination, which make use of thresholds and post-verification.

Key words: Early termination, sparse polynomial, black box polynomial,
interpolation, sparse interpolation, randomized algorithm, Chebyshev basis,
Pochhammer basis, racing two algorithms, Zippel’s algorithm, Ben-Or’s and
Tiwari’s algorithm.

Email addresses: kaltofen@math.ncsu.edu (Erich Kaltofen),
ws2lee@scg.uwaterloo.ca (Wen-shin Lee).

URLs: www.kaltofen.us (Erich Kaltofen), www.wen-shin.com (Wen-shin Lee).

Appears in J. Symbolic Comput., vol. 36, nr. 3–4, pp. 365–400 (2003).

1 Introduction

1.1 Polynomial representations and interpolations

A polynomial f(x1, . . . , xn) is represented as

f(x1, . . . , xn) =
t∑

j=1

cjx
ej,1

1 · · · xej,n
n (in the standard power basis). (1)

The black box representation of a polynomial is an object that takes as input
a value for each variable and evaluates the polynomial at the given input. To
determine the coefficients and terms of a black box polynomial is the problem
of black box interpolation.

In general, in a polynomial in (1) with total degree d = deg f , the number of

non-zero terms could be as many as
(

n+d

d

)

. When there are much fewer non-
zero terms, there are efficient interpolation algorithms that take advantage of
such situation: for polynomials that are sparse in the multivariate case, Zip-
pel’s probabilistic algorithm (Zippel 1979a) is more efficient than a variable by
variable Lagrange or Newton interpolation; based on the Berlekamp/Massey
algorithm (Massey 1969) from coding theory, Ben-Or and Tiwari (1988) gave
an algorithm that interpolates all variables at once. Both approaches have been
generalized and improved: the Vandermonde techniques of Ben-Or/Tiwari can
be applied to Zippel’s algorithm (Zippel 1990; Kaltofen and Lakshman Yagati
1988); the Ben-Or/Tiwari approach have been extended to some non-standard
polynomial bases (Lakshman Y. N. and Saunders 1995). For polynomials over
small finite fields both require modification (Grigoriev et al. 1990; Zilic and
Radecka 1999, and the references given there).

1.2 Early termination strategy and racing algorithms

The algorithms described so far require a bound in the input: a degree bound
for dense algorithms; and a bound on the number of terms for sparse algo-
rithms. When no such bound is supplied, an efficient probabilistic approach,
early termination, can be employed. This is based on the fact that an al-
ready interpolated polynomial does not change as more interpolation points
are added.

Our early termination algorithms are randomized in the Monte Carlo sense:
their results are correct with high probability. In our implementation, we fur-
ther adopt another strategy of putting partial verifications into our procedures,
and the early termination is only triggered after encountering a series of zero

Kaltofen/Lee 2 JSC 36 (’03), 365-400

discrepancies in a row. The length of the series is a threshold given as an
optional argument. For dense interpolations, we show how a higher threshold
can improve the lower bound of the probability of correctness (Lemma 2). For
sparse interpolations, we prove the early termination is correct for threshold
one, and note that higher thresholds weed out bad random choices from sets
that are much smaller than the early termination theorem would require. Fur-
ther analysis is complicated and our early termination algorithms with higher
thresholds thus become heuristics that can interpolate polynomials of a size
at the very edge of what current software and hardware can reach.

Sparse algorithms are less efficient when the target polynomial is dense. Based
on early termination, we propose racing algorithms that run a dense against
a sparse algorithm on a same set of evaluation points. The racing algorithm is
superior since it terminates as soon as either of the racer algorithms terminates
while requiring no additional evaluations in comparison to a single algorithm.

The early termination strategy seems to belong to the “folklore” of computer
algebra. We have used early termination in the mid-1980s (Freeman et al.
1988; Kaltofen and Trager 1990) for purpose of determining the degree of a
straight-line and black box polynomial. The algorithms perform Newton inter-
polation at non-random points and test whether the interpolant agrees with
the input polynomial at a random point (“post testing”, see section 6), thus
allowing for preconditioning in the interpolation process while guaranteeing a
given probability of success. Chinese remaindering with early termination is
applied to exact computations in geometry by Emiris (1998). Austin Lobo ob-
served early termination phenomenon in the setting of the Wiedemann (1986)
algorithm. We also note the vanishing of Wronskians as a criterion of t-sparsity
in (Grigoriev et al. 1991, 1994).

1.3 Hybrids of Zippel algorithm and other improvements

Zippel’s algorithm has a shortcoming over Ben-Or’s and Tiwari’s: it interpo-
lates one variable at a time, and that each variable is interpolated densely.
On the other hand, when the Ben-Or/Tiwari algorithm is implemented in a
modular fashion (Kaltofen et al. 1990), in the multivariate case the modu-
lus must be large enough to recover all non-zero terms. We also notice that
the Ben-Or/Tiwari algorithm with rational number arithmetic causes extreme
intermediate expression swell, while in Zippel’s algorithm the modulus only
needs to capture the coefficients, and be large enough for randomization.

For multivariate polynomial interpolations, we propose the hybrids of Zippel’s
algorithm: under Zippel’s variable by variable method, each variable is inter-
polated through a racing algorithm. Thus we can ameliorate the inefficiency of

Kaltofen/Lee 3 JSC 36 (’03), 365-400

dense univariate interpolations in the original Zippel’s algorithm, and reduce
the large modulus required by the Ben-Or/Tiwari in the multivariate case.

Refining the idea of prunings via homogenization (Dı́az and Kaltofen 1998),
we present and discuss permanent prunings and temporary prunings.

1.4 Maple implementation and further developments

Some of our ideas are implemented in a Maple package, ProtoBox. Clearly,
there is a trade-off between the operations introduced by concurrently per-
forming two interpolation algorithms in a racing algorithm and the savings of
polynomial evaluations. We intend our algorithms for polynomials produced
by the calculus of black box polynomials (Kaltofen and Trager 1990; Dı́az and
Kaltofen 1998).

1.5 Related work

Some of the results here have been reported in preliminary form in (Kaltofen
et al. 2000) and are part of Lee’s Ph.D. thesis (Lee 2001). In (Giesbrecht et al.
2003, 2002) we have used our early termination approach to extend our sparse
interpolation algorithms to the problem of computing sparsest shifts, that is,
computing elements a1, . . . , an in the coefficient field or an algebraic extension
such that f(y1 + a1, . . . , yn + an) (see (1)) has a minimum number of terms in
the yi. Again we consider power, Chebyshev and Pochhammer bases.

2 Early Termination in the Standard Basis

2.1 Early termination with thresholds in dense interpolations

To interpolate a univariate polynomial f(x) from its evaluations at distinct
points p0, p1, . . ., a dense algorithm updates an i-th interpolant f [i](x) for ev-
ery i ≥ 0, where f [i](x) is a polynomial interpolating f(p0), . . . , f(pi) and
deg f [i](x) ≤ i. Since at least one i-th order term is constructed in every
f [i](x), the target polynomial is recovered as a possible dense polynomial up
to the degree bound.

In Newton’s interpolation, f [0](x) = f(p0), and for i > 0, ci the i-th divided

Kaltofen/Lee 4 JSC 36 (’03), 365-400

difference, f [i](x) is updated as:

f [i](x) = f [i−1](x) + ci(x− p0)(x− p1) · · · (x− pi−1).

Note that the target polynomial can be viewed as being interpolated in a
mixed power basis: 1, (x− p0), (x− p0)(x− p1), (x− p0)(x− p1)(x− p2),

Once the target polynomial is interpolated, the interpolant does not change
even if we keep interpolating f(x) at more distinct points, namely, f [d+j](x) =
f(x) for d = deg f and j ≥ 0. Based on the observation, the early termination
with thresholds is applied as the following: an integer η > 0 is given as a
threshold, the sequence p0, p1, . . . are random values, and f [i](x) is updated for
every i ≥ 0. Whenever f [i](x) stops changing η times in a row, f(x) = f [i](x)
with high probability.

Theorem 1 (Early termination with threshold in dense univariate
interpolations) Given are a black box univariate polynomial f(x) over a
field and an integer η > 0 as the threshold. Let p0, p1, . . . be chosen randomly
and uniformly from a subset S of the domain, and f [i](x) the i-th interpolant
that interpolates f(p0), . . . , f(pi). Note that pi are not necessarily all distinct.
If d is the smallest non-negative integer such that

f [d](x) = f [d+1](x) = · · · = f [d+η](x), (2)

then f [d](x) correctly interpolates f(x) with probability no less than

1− η · deg f(x) ·

(

deg f(x)

#(S)

)η

. (3)

PROOF. If d is the smallest integer that satisfies (2) and f [d](x) 6= f(x),
then both of the following happen:

1. either d = 0, or pd is not a root of f(x)− f [d−1](x);

2. pd+1, . . . , pd+η are all roots of f(x)− f [d](x).

If f [d](x) 6= f(x), by the nature of a dense algorithm, deg f [d](x) < deg f(x)
and deg (f(x)− f [d](x)) = deg f(x). There are at most deg f(x) distinct roots
in f(x)−f [d](x). The probability of randomly hitting a root of f(x)−f [d](x) in
S is no more than deg f(x)/#(S). We define a probability function P (i) as the
following: when i = 0, P (i) is the probability that f [0](x) 6= f(x) but f [0](x) =
f [1](x) = · · · = f [η](x), that is, p1, . . . , pη are all roots of f(x)− f [0](x); when
i ≥ 1, P (i) is the probability that f [i](x) 6= f(x) and i is the smallest integer
such that f [i](x) 6= f [i−1](x) and f [i](x) = f [i+1](x) = · · · = f [i+η](x), in other
word, pi+1, . . ., pi+η are all roots of f(x) − f [i](x). For every i ≥ 0, P (i) ≤
(deg f(x)/#(S))η because we need to hit a root of f(x) − f [i](x) for η times.

Kaltofen/Lee 5 JSC 36 (’03), 365-400

If f(x) is interpolated correctly, at most η ·deg f(x) values can be interpolated
before the target polynomial is obtained, which only happens when each inter-
polant stops changing for exactly η−1 many times. Therefore,

∑η·deg f(x)−1
i=0 P (i)

covers all the possibilities of f(x) being falsely interpolated, and f [d](x) cor-
rectly interpolates f(x) with probability no less than

1−
η·deg f(x)−1

∑

i=0

P (i) ≥ 1− η · deg f(x) ·

(

deg f(x)

#(S)

)η

. 2

In Theorem 1, we estimate the probability loosely: whenever f [i](x) 6= f [i−1](x),
f(x) cannot be falsely interpolated at any of f [i+1](x), . . ., f [i+η−1](x).

Based on (3), when #(S) is large enough, a higher threshold can improve the
lower bound of the probability of correctness.

Lemma 2 In Theorem 1, the lower bound of the probability of correctness
in (3) can be improved when the threshold η is increased to η + ∆η if

(
deg f(x)

#(S)

)∆η

<
η

η + ∆η

and ∆η is a positive integer.

The lower bound discussed in Theorem 1 and Lemma 2 does not reflect the real
performance improved by higher thresholds, which are evident for small #(S)
(see Section 6 for test results). The points p0, p1, . . . are not necessarily distinct
in Theorem 1, in our implementation, instead of f [i](x), we update f {k}(x) at
a non-repeated point so that f {k}(x) interpolates the first k + 1 distinct ones
(also see the algorithm steps in Subsection 4.2). This modification avoids the
false early terminations due to interpolating at repeated points. To ensure a
successful interpolation, the size of S needs to cover enough distinct points
required by the early termination, that is, no less than deg f(x) + 1 + η.

2.2 The Ben-Or/Tiwari sparse interpolation algorithm

The Berlekamp/Massey algorithm (Massey 1969) processes a stream of ele-
ments a0, a1, . . . from a field K. If the sequence is linearly generated, the algo-
rithm can determine its minimal polynomial Λ(z) = zt + λt−1z

t−1 + · · · + λ0

such that
at+j = −λt−1at−1+j − · · · − λ0aj for all j ≥ 0 (4)

after processing exactly 2t elements. A linear generator (4) is a column relation
in an infinite Hankel matrix. The Berlekamp/Massey algorithm updates that
relation as depicted in Figure 1 below. A generator Λ[L] of degree L is valid as

Kaltofen/Lee 6 JSC 36 (’03), 365-400

N−L
a

N−L
a

N−L
a

N−L
a

a
N−1

a
N−1

a2N−2L+2

a2N−2L+1

a
N+1

L+1

a0

1a

L’

aN’L−1
a aN

aN

aN

N

aL+1

aL N−L+1
a

a

N−L+2

L

N−L+1

a

2L−1

L

N−L+1

L+1

Fig. 1. Berlekamp/Massey algorithm.

far as aN−1, but fails to generate aN . By induction hypothesis we can assume
that Λ[L] is minimal for a2L−1, and more concretely that the leading principal
L×L submatrix in Figure 1 was non-singular. The new generator is of degree
N − L + 1 (Massey 1969, cf. Theorem 1): the last column of the (L + 1) ×
(N − L + 1) submatrix cannot be generated by preceding columns, because
the corresponding row in the transposed matrix has increased the rank to
L+1. First, one captures aN by a linear combination of the previous generator
Λ[L′] and the shifted Λ[L]. Both generators leave a non-zero discrepancies, the
former for aN ′ and the later for aN , so a linear combination can generate
aN . That linear combination works for aN−1, aN−2, . . . , aN−L+1 because both
Λ[L′] and the shifted Λ[L] have zero discrepancies in those rows. The elements
aN+1, aN+2, . . . , a2N−2L+1 are generated by modifying the newly constructed
linear combination further through the discrepancies of the step-wise shifted
Λ[L] in each new row. Finally, the leading principal (N −L+ 1)× (N −L+ 1)
submatrix is non-singular, because any column relation could be shifted up
and right to give one that generates the last column of the (L+1)×(N−L+1)
submatrix.

The Berlekamp/Massey algorithm implements both kinds of updates, namely
jumping the degree and completing to a square submatrix in a single loop with
a conditional to test which case one is processing. We note that the generator
Λ[N−L+1] has a non-zero discrepancy for a2N−2L+2 if and only if the leading
principal (2N − 2L+ 2)× (2N − 2L+ 2) submatrix is non-singular.

Kaltofen/Lee 7 JSC 36 (’03), 365-400

Now consider a multivariate polynomial f over a field of characteristic zero:

f(x1, . . . , xn) =
t∑

j=1

cjx
ej,1

1 · · · xej,n
n =

t∑

j=1

cjβj(x1, . . . , xn), cj 6= 0. (5)

Let p1, . . . , pn be distinct primes, bj = βj(p1, . . . , pn) = p
ej,1

1 · · · p
ej,n
n , and ai =

f(pi
1, . . . , p

i
n) =

∑t
j=1 cjb

i
j. Define an auxiliary polynomial Λ(z) as:

Λ(z) =
t∏

j=1

(z − bj) = zt + λt−1z
t−1 + · · ·+ λ0.

Theorem 3 For a polynomial f in (5), and ai = f(pi
1, . . . , p

i
n) with dis-

tinct primes p1, . . . , pn, the sequence {ai}i≥0 is linearly generated by Λ(z).
Furthermore, Λ(z) is the minimal polynomial of {ai}i≥0 (Ben-Or and Tiwari
1988) 1 .

The Berlekamp/Massey algorithm can determine Λ(z) from {ai}i≥0; by finding
the roots of Λ(z), bj can be obtained. Then each term βj = x

ej,1

1 · · · x
ej,n
n are

recovered through repeatedly dividing bj by p1, . . . , pn. Finally, the coefficients
cj are computed via solving the linear system ai =

∑t
j=1 cjb

i
j with 0 ≤ i ≤ t−1,

which turns out to be a t× t transposed Vandermonde system:

1 1 . . . 1

b1 b2 . . . bt
...

...
. . .

...

bt−1
1 bt−1

2 . . . bt−1
t

c1

c2
...

ct

=

a0

a1

...

at−1

. (6)

Efficient algorithms for solving transposed Vandermonde systems can be found
in (Kaltofen and Lakshman Yagati 1988; Zippel 1990).

Algorithm: Ben-Or/Tiwari

Input: I f(x1, . . . , xn): a multivariate black box polynomial.
I τ : τ ≥ t, where t is the number of the terms with non-zero coeffi-

cients in f .

Output:I cj and βj: f(x1, . . . , xn) =
∑t

j=1 cjβj and cj 6= 0.

(1) [The Berlekamp/Massey algorithm.]

ai = f(pi
1, . . . , p

i
n), 0 ≤ i ≤ 2τ − 1, where p1, . . . , pn are relatively prime.

Compute Λ(z) from {ai}2τ−1≥i≥0.

(2) [Determine βj.]

Find all t distinct roots of Λ(z), which are bj.
Determine each βj through repeatedly dividing every bj by p1, . . . , pn.

1 George Labahn has pointed out to us a similarity of the Ben-Or and Tiwari
algorithm to Prony’s method (Prony III (1795)) in signal processing.

Kaltofen/Lee 8 JSC 36 (’03), 365-400

(3) [Compute the coefficients cj.]

Solve a transposed Vandermonde system.

2.3 Early termination in the Ben-Or/Tiwari interpolation algorithm

Both algorithms of Ben-Or and Tiwari (1988) and Kaltofen et al. (1990) need
to know the number of terms t, or an upper bound τ ≥ t. Otherwise, we can
guess τ , within τ compute a candidate polynomial g for f , and then compare
g and f at an additional random point. If the values are different, or it fails
in computing g, we double our guess for τ .

The early termination version of the Ben-Or/Tiwari algorithm requires a single
interpolation run. Here is the basic idea: pick a random point p = (p1, . . . , pn)
for the evaluations f(pi

1, . . . , p
i
n) in the Ben-Or/Tiwari algorithm, and show

that with high probability the embedded Berlekamp/Massey algorithm does
not encounter a singular L × L principal submatrix (see Figure 1) until L =
t+ 1.

However, this is not generally true: for any f(x) =
∑t

j=1 cjx
ej that satisfies

f(p0) = a0 = c1 + · · · + ct = 0, the first discrepancy is zero. We have two
ways to fix this problem: either pick another random pc 6= 0 and proceed the
interpolation with f + pc (see Subsection 3.4); or, as shown in this section,
shift the sequence by one element.

We want to show that for symbolic values x1, . . . , xn, the first singular leading
principal submatrix appears at L = t + 1. Let βj = x

ej,1

1 · · · x
ej,n
n be the j-th

non-zero term in f , and αi = f(xi
1, . . . , x

i
n) the symbolic evaluations of f at

powers, we have

Ai =

α1 α2 . . . αi

α2 α3 . . . αi+1

...
...

. . .
...

αi αi+1 . . . α2i−1

= BiCtB̄
Tr
i , (7)

where

Bi =

1 1 . . . 1

β1 β2 . . . βt

...
...

. . .
...

βi−1
1 βi−1

2 . . . βi−1
t

, Ct =

c1 0 . . . 0

0 c2 . . . 0
...

...
. . .

...

0 0 . . . ct

,

Kaltofen/Lee 9 JSC 36 (’03), 365-400

and

B̄i =

β1 β2 . . . βt

β2
1 β

2
2 . . . β

2
t

...
...

. . .
...

βi
1 β

i
2 . . . β

i
t

.

Theorem 4 The determinant of Ai is non-zero for i = 1, . . . , t.

PROOF. Let MJ,K be the determinant of the submatrix of M consisting
of rows in J and columns in K. By the Binet-Cauchy formula (Gantmacher
1977),

(AB)J,L =
∑

1≤k1<k2<···<ki≤n

AJ,{k1,...,ki}B{k1,...,ki},L, (8)

where n is the number of columns in A and #(J) = #(L) = i.

Applying (8) to (7) with I = {1, . . . , i} for 1 ≤ i ≤ t, we have

detAi = (BiCtB̄
Tr
i)I,I =

∑

J

∑

K

(Bi)I,J(Ct)J,K(B̄Tr
i)K,I =

∑

J

(Bi)I,J(Ct)J,J(B̄Tr
i)J,I

=
∑

J={j1,...,ji}

cj1 · · · cji
βj1βj2 · · · βji

· det
(

1 1 . . . 1

βj1 βj2 · · · βji

...
...

. . .
...

βi−1
j1

βi−1
j2

. . . βi−1
ji

)2

=
∑

J={j1,...,ji}

cj1 · · · cji
βj1βj2 · · · βji

·
∏

1≤v<u≤i

(βju
− βjv

)2. (9)

Now let the terms β1 � β2 � · · · � βt be ordered lexicographically. The
summand

c1 · · · ci β1β2 · · · βi

∏

1≤v<u≤i

(βv − βu)
2

has the term β2i−1
1 β2i−3

2 · · · βi which occurs nowhere else, 2 and detAi does not
vanish symbolically. 2

We make the transition from symbolic x1, . . . , xn to random field elements
p1, . . . , pn in the customary fashion via the the Schwartz-Zippel lemma (Zippel
1979a; Schwartz 1980; DeMillo and Lipton 1978).

2 In this argument we make use of the shift by 1 element. We do not know if shifting
is needed if one were to exclude the first discrepancy from the termination test.

Kaltofen/Lee 10 JSC 36 (’03), 365-400

Theorem 5 If p1, . . . , pn are chosen randomly and uniformly from a subset
S of the domain, which is assumed to be an integral domain, then for the
sequence {ai}i≥1, where ai = f(pi

1, . . . , p
i
n), the Berlekamp/Massey algorithm

encounters a singular Hankel matrix (and the corresponding zero discrepancy)
the first time at N = 2t+ 1 with probability no less than

1−
t(t+ 1)(2t+ 1) deg(f)

6 ·#(S)
,

where #(S) is the number of elements in S.

PROOF. By (9), deg(detAi) ≤ i2 deg(f). We have to avoid all possible ze-
roes in

∏t
i=1 detAi, whose degree is no more than t(t+1)(2t+1) deg(f)/6. The

estimate of the probability follows from Lemma 1 in (Schwartz 1980). 2

The estimate in Theorem 5 is, like the Zippel-Schwartz estimate, somewhat
pessimistic. Consider the following argument. Over a finite field of q elements
we may choose the set S to be the entire field, that is, q = #(S). If we assume
that ai = f(pi

1, . . . , p
i
n) are randomly uniformly distributed, the probability

that

0 6= (det(A1) · · · det(At))α1←a1,...,α2t−1←a2t−1

is exactly (1 − 1/q)t ≥ 1 − t/q; cf. (Kaltofen and Lobo 1996); the proof is
by induction on i, viewing detAi+1 as a linear polynomial in α2i+1 whose co-
efficient is detAi. Even then, the probability of premature false termination
can become unacceptably high, especially when q is small. In our implementa-
tion enhanced with thresholds, the user can supply an integer ζ ≥ 1, and the
early termination is triggered after a singular Hankel matrix occurs ζ times
in a row. The precise analysis is complicated and governed by the conditional
probabilities P (det(Ai+1) = 0 | det(Ai) = 0) for i ≥ 1.

Algorithm: Early Termination Ben-Or/Tiwari

Input: I f(x1, . . . , xn): a multivariate black box polynomial.
I ζ: a positive integer, the threshold for early termination.

Output:I cj and βj: f(x1, . . . , xn) =
∑t

j=1 cjβj with high probability.
I Or an error message: if the procedure fails to complete.

(1) [The early termination within the Berlekamp/Massey algorithm.]

Pick random elements: p1, . . . , pn /∈ {0, 1}.
For i = 1, 2, . . .

Perform the Berlekamp/Massey algorithm on {f(pi
1, . . ., p

i
n)}i≥1.

If Hankel matrix singularity happens ζ many times in a row, then

break out of the loop;

(2) [Determine βj.]

Kaltofen/Lee 11 JSC 36 (’03), 365-400

Compute all the roots bj of Λ(z) in the domain of p1, . . . , pn.
If Λ(z) does not completely factor, or not all the roots are distinct, then

the early termination was false.

Otherwise, determine βj: repeatedly divide the roots bj by p1, . . . , pn.

Again, this might fail for unlucky pi.

(3) [Determine cj.]

Solve a transposed Vandermonde system.

Remark: If the coefficient field is a subfield of real numbers and ci > 0 for all
i, no randomization is necessary. The following argument is standard for the
least squares problem with a weighted inner product:

BiCtB
Tr
i y = 0 =⇒ yTrBiCtB

Tr
i y = 0 =⇒ (BTr

i y)
TrCt(B

Tr
i y) = 0 =⇒ BTr

i y = 0,

because 0 = zTrCtz =
∑
cjz

2
j =⇒ z = 0. Therefore y = 0, and BiCtB

Tr
i is

non-singular.

3 Early Termination in Non-Standard Bases

As generalizations of the Ben-Or/Tiwari algorithm in the univariate case, Lak-
shman Y. N. and Saunders (1995) gave sparse algorithms in the Pochhammer
and Chebyshev bases. We present the early termination versions of these al-
gorithms.

3.1 Univariate sparse interpolations in the Pochhammer basis

The Pochhammer symbol, xn = x(x + 1) · · · (x + n − 1), is defined for any
integer n ≥ 0; a polynomial f(x) is represented in the Pochhammer basis as

f(x) =
t∑

j=1

cjx
ej , 0 ≤ e1 < e2 < · · · < et and cj 6= 0 for 1 ≤ j ≤ t.

Let f (k)(x) =
∑t

j=1 e
k
j cjx

ej for k ≥ 0 and define the finite difference operator

∆(f(x)) = f(x+ 1)− f(x). Then ∆(xk) = (x+ 1)k − xk = k(x+ 1)k−1 and

x ·∆(f (k)(x)) = f (k+1)(x). (10)

For 0 ≤ k ≤ 2t − 1, f (k)(p) can be computed by applying the recurrence
in (10) to the subsequent evaluations f(p + k). Lemma 1 in (Lakshman Y.

Kaltofen/Lee 12 JSC 36 (’03), 365-400

N. and Saunders 1995) shows the finite sequence {f (k)(p)}2t−1≥k≥0 is linearly
generated by

Λ(z) =
t∏

j=1

(z − ej) = λtz
t + λt−1z

t−1 + · · ·+ λ0 and λt = 1. (11)

Theorem 1 in (Dress and Grabmeier 1991) shows that for any p > 0,

f (0)(p) f (1)(p) . . . f (t−1)(p)

f (1)(p) f (2)(p) . . . f (t)(p)
...

...
. . .

...

f (t−1)(p) f (t)(p) . . . f (2t−2)(p)

is non-singular.

Algorithm: Sparse Interpolation <Pochhammer Basis> (Lakshman Y.
N. and Saunders 1995)

Input: I f(x): a univariate black box polynomial.
I t: the number of non-zero terms of f in the Pochhammer basis.

Output:I cj and ej: f(x) =
∑t

j=1 cjx
ej .

(1) [The Berlekamp/Massey algorithm.]

Compute f (k)(p) from f(p+ k), where 0 ≤ k ≤ 2t− 1 and p > 0.
Determine Λ(z) from {f (k)(p)}0≤k≤2t−1.

(2) [Determine ej.]

Find all t distinct roots ej of Λ(z).

(3) [Compute the coefficients cj.]

Solve a transposed Vandermonde system to obtain cjp
ej .

Compute cj from cjp
ej since both p and ej are known.

3.2 Early termination of sparse interpolations in the Pochhammer basis

The sparse algorithm in the Pochhammer basis (Lakshman Y. N. and Saunders
1995) requires an input t as the number of Pochhammer terms in f(x). To ap-
ply the early termination, we need to show that in addition to {f (k)(p)}2t−1≥k≥0,
Λ(z) in (11) generates the entire {f (k)(p)}k≥0.

Theorem 6 For any p > 0, Λ(z) generates {f (k)(p)}k≥0.

PROOF. From Lemma 1 in (Lakshman Y. N. and Saunders 1995), we have

t∑

j=0

λjf
(j+k)(p) = 0 and

t∑

j=0

λjf
(j+k)(p+ 1) = 0 for k = 0, . . . , t− 1.

Kaltofen/Lee 13 JSC 36 (’03), 365-400

By (10) and the induction on k,

p·
(t∑

j=0

λjf
(j+k)(p+ 1)−

t∑

j=0

λjf
(j+k)(p)

)

=
t∑

j=0

λj · p ·
(

f (j+k)(p+ 1)− f (j+k)(p)
)

=
t∑

j=0

λjf
(j+k+1)(p) = 0. 2

To show that Λ(z) is the minimal polynomial of {f (k)(p)}k≥0, we need to
consider the following k × k Hankel matrix in variable x:

Ak =

f (0)(x) f (1)(x) . . . f (k−1)(x)

f (1)(x) f (2)(x) . . . f (k)(x)
...

...
. . .

...

f (k−1)(x) f (k)(x) . . . f (2k−2)(x)

.

Theorem 7 The determinant of Ak is nonzero for k = 1, . . . , t.

PROOF. The following factorization can be verified by matrix multiplica-
tions:

Ak =

1 1 . . . 1

e11 e12 . . . e1
t

...
...

. . .
...

ek−1
1 ek−1

2 . . . ek−1
t

c1x
e1 0 . . . 0

0 c2x
e2 . . . 0

...
...

. . .
...

0 0 . . . ctx
et

1 e1
1 . . . e

k−1
1

1 e1
2 . . . e

k−1
2

...
...

. . .
...

1 e1
t . . . e

k−1
t

= BkCtB
Tr
k .

Apply the Binet-Cauchy formula (Gantmacher 1977) in (8) withK = {1,. . .,k}:

detAk =
∑

J

∑

L

(Bk)K,J(Ct)J,L(BTr
k)L,K =

∑

J

(Bk)K,J(Ct)J,J(BTr
k)J,K

=
∑

J={j1,...,jk}

cj1 · · · cjk
xej1xej2 · · · xejk · det

(

1 1 . . . 1

e1j1 e1j2 . . . e1
jk

...
...

. . .
...

ek−1
j1

ek−1
j2

. . . ek−1
jk

)2

=
∑

J={j1,...,jk}

cj1 · · · cjk
xej1xej2 · · · xejk ·

∏

1≤v<u≤k

(eju
− ejv

)2. (12)

Kaltofen/Lee 14 JSC 36 (’03), 365-400

The highest order term ct · · · ct−k+1 x
et · · · xet−k+1

∏

1≤v<u≤k(eu − ev)
2 in (12)

appears only once, and detAk does not vanish for 1 ≤ k ≤ t. 2

Lemma 8 detAk = 0 if and only if k > t.

PROOF. For k = 1, . . . , t, detAk 6= 0, therefore detAk = 0 implies k > t.
Because Λ(z) generates {f (k)(x)}k≥0, when k > t, the k-th row of Ak is a
linear combination of (k− t)-th through (k− 1)-th rows, and detAk = 0. 2

We now conclude for a random p > 0, with high probability the Berlekamp/
Massey algorithm on {f (k)(p)}k≥0 encounters the first singular Hankel matrix
when N = 2t+ 1.

Theorem 9 Let S be a subset of the domain, which is assumed to be an
integral domain, and that all elements of S are positive. Consider f (k)(x) =
∑t

j=1 e
k
j cjx

ej for f(x) =
∑t

j=1 cjx
ej . If p is chosen randomly and uniformly

from S, then for {f (k)(p)}k≥0, the Berlekamp/Massey algorithm encounters a
singular Hankel matrix the first time at N = 2t + 1 with probability no less
than

1−
t(t+ 1)(3 deg f + 1− t)

6 ·#(S)
,

where #(S) is the number of elements in S.

PROOF. From (12), we have deg(detAk) ≤
∑k−1

j=0

(

deg f − j
)

= k deg f +

k/2− k2/2. We need to avoid all possible zeroes in
∏t

k=1 detAk, whose degree
is no more than

∑t
k=1(k deg f + k/2− k2/2). 2

A higher threshold ζ > 1 can also be introduced as the early termination is
triggered after Hankel matrix singularity occurs ζ times in a row. The anal-
ysis of probability with higher thresholds requires further investigations on
P (det(Ak+1) = 0 | det(Ak) = 0), where Ak are Ak evaluated at x = p.

Algorithm: Early Termination Sparse Interpolation <Pochhammer

Basis>

Input: I f(x): a univariate black box polynomial.
I ζ: a positive integer, the threshold for early termination.

Output:I cj and ej: f(x) =
∑t

j=1 cjx
ej with high probability.

I Or an error message: if the procedure fails to complete.

(1) [The early termination within the Berlekamp/Massey algorithm.]

Pick a random positive value p > 0.
For i = 1, 2, . . .

Kaltofen/Lee 15 JSC 36 (’03), 365-400

Perform the Berlekamp/Massey algorithm on {f (i)(p)}i≥0;

f (i)(p) are computed from f(p+ k) for k = 0, . . . , i− 1.

If Hankel matrix singularity happens ζ times in a row,

then break out of the loop;

(2) [Determine ej.]

Compute all the roots of Λ(z).
If not that all roots are distinct non-negative integers, then

the early termination was false;

else, the roots are ej, the Pochhammer exponents in f(x).

(3) [Compute the coefficients cj.]

Solve a transposed Vandermonde system to obtain cjp
ej .

Compute cj from cjp
ej since both p and ej are known.

3.3 Univariate sparse interpolations in the Chebyshev basis

Let Ti(x) denote the i-th Chebyshev polynomial of the first kind: T0(x) = 1,
T1(x) = x, Ti(x) = 2xTi−1(x) − Ti−2(x) for i ≥ 2. A polynomial f(x) over a
field K is represented in the Chebyshev basis if cj 6= 0 and

f(x) =
t∑

j=1

cjTδj
(x), 0 ≤ δ1 < δ2 < · · · < δt.

Let ak = f(Tk(p)) for some p > 1 and 0 ≤ k ≤ 2t− 1, consider:

Λ(z) =
t∏

j=1

(z − Tδi
(p)) = λtTt(z) + λt−1Tt−1(z) + · · ·+ λ0T0(z) with λt = 1.

Lakshman Y. N. and Saunders (1995) showed that for i ≥ 0:

t−1∑

j=0

λj(aj+i + a|j−i|) = −(at+i + a|t−i|). (13)

And the linear relations in (13) form the following system:

2a0 2a1 . . . 2at−1

2a1 a2 + a0 . . . at + at−2

...
...

. . .
...

2at−1 at + at−2 . . . a2t−2 + a0

λ0

λ1

...

λt−1

= −

2at

at+1 + at−1

...

a2t−1 + a1

. (14)

Kaltofen/Lee 16 JSC 36 (’03), 365-400

Consider the t× t symmetric Hankel-plus-Toeplitz matrix At in (14):

At =

2a0 2a1 . . . 2at−1

2a1 a2 + a0 . . . at + at−2

...
...

. . .
...

2at−1 at + at−2 . . . a2t−2 + a0

. (15)

The sparse interpolation in the Chebyshev basis follows from the fact that At

is non-singular (Lakshman Y. N. and Saunders 1995, see Lemma 6).

Algorithm: Sparse Interpolation <Chebyshev Basis> (Lakshman Y. N.
and Saunders 1995)

Input: I f(x): a univariate black box polynomial.
I t: the number of non-zero terms of f in the Chebyshev basis.

Output:I cj and δj: f(x) =
∑t

j=1 cjTδj
(x).

(1) [Solve the symmetric Hankel-plus-Toeplitz system in (14).]

p > 1, ak = f(Tk(p)) for k = 0, 1, . . . , 2t− 1.
Determine Λ(z): λt = 1, for 0 ≤ j ≤ t−1, λj are obtained by solving (14).

(2) [Determine δj.]

Find all t distinct roots of Λ(z), which are Tδj
(p).

Determine the Chebyshev exponents δj from Tδj
(p).

(3) [Compute the coefficients cj.]

Solve a transposed Vandermonde-like system to obtain cj (Lakshman Y.
N. and Saunders 1995, the discussion on pp. 394–396).

Remark: By showing At non-singular, Lakshman Y. N. and Saunders (1995)
assured the solution to (14). Unfortunately, in general a non-singular At alone
does not guarantee that a solution can be computed in O(t2) deterministic
field operations.

3.4 Early termination of sparse interpolations in the Chebyshev basis

Gohberg and Koltracht (1989) gave an O(t2) algorithm for solving a t× t sym-
metric Hankel-plus-Toeplitz system with all principal leading submatrices non-
singular. In general this is not true for At in (14): for any f(x) =

∑t
j=1 cjTδj

(x)

with c1 + · · · + ct = 0, A1 =
[

2a0

]

=
[

0

]

for all p > 1. We fix this problem

through randomization: whenever f(T0(p)) = 0 for any p > 1, pick a suitable
pc 6= 0 and interpolate f̃(x) = f(x) + pc instead. As a result, we always start
with a 1× 1 non-singular leading submatrix. After f̃(x) is interpolated, f(x)

Kaltofen/Lee 17 JSC 36 (’03), 365-400

can be recovered by removing pc from f̃(x).

This random pc further provides all principal leading submatrices of At non-
singular with high probability. Suppose f̃(x) =

∑t̃
j=1 c̃jTδj

(x) with 0 ≤ δ1 <
δ2 < · · · < δt̃, whose constant has already been “randomized.” Let y repre-
sent the random component in the constant, namely,

∑t
j=1 cj + y =

∑t̃
j=1 c̃j.

Consider αk = f̃(Tk(x)) and the i×i symmetric Hankel-plus-Toeplitz systems:

Ai =

2α0 2α1 . . . 2αi−1

2α1 α2 + α0 . . . αi + αi−2

...
...

. . .
...

2αi−1 αi + αi−2 . . . α2i−2 + α0

. (16)

The entries of Ai are polynomials in x and y. Our purpose is to prove that Ai

is non-singular for 1 ≤ i ≤ t̃ in x and y symbolically, and that At̃+1 is singular.
The singularity of Ai for i > t̃+ 1 is concluded from Lemma 5 in (Lakshman
Y. N. and Saunders 1995).

Based on the proof of Lemma 6 in (Lakshman Y. N. and Saunders 1995),
Ai = ViCV

Tr
i for 1 ≤ i ≤ t̃, where

Vi =

Tδ1(T0(x)) Tδ2(T0(x)) . . . Tδt̃
(T0(x))

...
...

. . .
...

Tδ1(Ti−1(x)) Tδ2(Ti−1(x)) . . . Tδt̃
(Ti−1(x))

and

C =

2c̃1 0 . . . 0

0 2c̃2 . . . 0
...

...
. . .

...

0 0 . . . 2c̃t̃

.

The Chebyshev polynomials commute with respect to composition: for m,n ≥
0, Tn(Tm(x)) = Tmn(x) = Tm(Tn(x)), and

Vi =

Tδ10(x) Tδ20(x) . . . Tδt̃0
(x)

...
...

. . .
...

Tδ1(i−1)(x) Tδ2(i−1)(x) . . . Tδt̃(i−1)(x)

. (17)

Lemma 10 For n ≥ 1, Tnδ(x) =
∑n

i=0 γn,iTδ(x)
i and γn,n = 2n−1.

Kaltofen/Lee 18 JSC 36 (’03), 365-400

PROOF. When n = 1, 2, the above statement is true.

Suppose the statement is true for all n ≤ k, by induction consider n = k + 1:

T(k+1)δ(x) = 2Tδ(x)Tkδ(x)− T(k−1)δ(x)

= 2Tδ(x)
(

2k−1Tδ(x)
k +

k−1∑

i=0

γk,iTδ(x)
i

)

−
k−1∑

i=0

γk−1,iTδ(x)
i

= 2kTδ(x)
k+1 +

k∑

i=0

γk+1,iTδ(x)
i =

k+1∑

i=0

γk+1,iTδ(x)
i. 2

By Lemma 10, Vi in (17) can be factorized as:

Vi =

1 0 0 . . . 0

0 1 0 . . .
...

∗ ∗ 2 . . .
...

...
...

...
. . .

...

∗ ∗ ∗ . . . 2i−2

Tδ1(x)
0 Tδ2(x)

0 . . . Tδt̃
(x)0

Tδ1(x)
1 Tδ2(x)

1 . . . Tδt̃
(x)1

...
...

. . .
...

Tδ1(x)
i−1 Tδ2(x)

i−1 . . . Tδt̃
(x)i−1

= LiBi.

For 1 ≤ i ≤ t̃,

Ai = ViCV
Tr
i = LiBiC(LiBi)

Tr = Li(BiCB
Tr
i)LTr

i . (18)

Theorem 11 The determinant of Ai is non-zero for 1 ≤ i ≤ t̃.

PROOF. When i = t̃, this is Lemma 6 in (Lakshman Y. N. and Saunders
1995). Now consider 1 ≤ i < t̃, we have detAi = detLi det(BiCB

Tr
i) detLTr

i .
Assume det(BiCB

Tr
i) = 0 for some i, which implies all terms in det(BiCB

Tr
i)

are zero. In other word, for every ordered list I from {1, 2, . . . , t̃} such that
#(I) = i− 1 and jk ∈ I with index k ∈ {1, . . . , i− 1}, the coefficient of term
∏

jk∈I Tδjk
(x)2k is zero, that is, 2i∏

jk∈I c̃jk

∑

j∈{1,2,...,t̃}−I c̃j = 0. Knowing that

both 2i and
∏

jk∈I c̃jk
are non-zero, it must be

∑

j∈{1,2,...,t̃}−I c̃j = 0. Adding up

all such sums,
∑

#(I)=i−1

∑

j∈{1,2,...,t̃}−I c̃j = (t̃−1)(t̃−2) · · · (t̃−i+1)
∑t̃

j=1 c̃j = 0
implies

∑t
j=1 c̃j = y +

∑t
j=1 cj = 0, which is a contradiction since y cannot be

cancelled in y+
∑t

j=1 cj symbolically. Hence, det(BiCB
Tr
i) 6= 0. From the non-

zero diagonals, detLTr
i = detLi 6= 0, and detAi 6= 0 is concluded. 2

The original algorithm of Gohberg and Koltracht (1989) solves Ax = c when
A and c are given. In our application, we solve for (13), which is the solution
λ = [λ0, . . . , λt̃]

Tr to the first singular system such that λt̃ = 1.

Kaltofen/Lee 19 JSC 36 (’03), 365-400

We denote the entry at i-th row and j-th column in At̃+1 as ãi,j, and underline
the vector variables to distinguish them from their indexed components, for
example γ = [γ1, . . . , γi]

Tr. The i × i identity matrix is Ii, and Li is the i × i
matrix defined as:

Li =

0 0

1 0 . . .
...

...
.

...

0 . . . 1 0

.

Algorithm: Modified Gohberg/Koltracht

Input: I hk and tk, k ∈ Z≥0: ãi,j = hi+j−2 + t|i−j| define the entries in the
given symmetric Hankel-plus-Toeplitz system and that ã1,1 6= 0.

Output:I λ = [λ0, . . . , λt]
Tr: At+1λ = 0 with λt = 1, where t ≥ 1 is the small-

est integer such that the symmetric Hankel-plus-Toeplitz system
At+1 is singular.

(1) [With ã1,1 6= 0, ∆ reflects the singularity of A2. If ∆ = 0, return λ such
that A2λ = 0 and λ1 = 1; otherwise, proceed with the initialization.]

∆← ã1,1ã2,2 − ã1,2ã2,1;
If ∆ = 0 then

Return λ = [−ã1,2/ã1,1, 1]
Tr;

Else

i← 1; γ ← [1/ã1,1]; ψ ← [1/ã1,1]; φ← [t1/ã1,1]; α← ã2,1/ã1,1;

γnew ← (1/∆)[−ã1,2, ã1,1]
Tr;

(2) [Increase i, if ∆ 6= 0, follow (Gohberg and Koltracht 1989) to update γnew.
If ∆ = 0, then Ai+1 is singular (see Theorem 13). We assign λt = 1 and
update the rest of λ so that Ai+1λ = 0.]

While ∆ 6= 0 do

i← i+ 1; κ← (ti + hi−2)−
∑i−1

j=1 ãi,jφj; µ← −
∑i−1

j=1 ãi,jψj;

φnew ← [φTr, 0]Tr + κγnew; ψnew ← [ψTr, 0]Tr + µγnew;

αnew ←
∑i

j=1 ãi+1,jγ
new
j ;

b←
(

(α− αnew)Ii + Li + LTr
i

)

γnew − [γTr, 0]Tr + ψnew
i φnew − φnew

i ψnew;

ν ←
(

γnew
i

)−1∑i
j=1 ãi+1,jbj; ∆← ν + ãi+1,i+1;

If ∆ = 0 then

λi ← 1; For j = 0 . . . i− 1 do λj ← bj+1/γ
new
i ;

Return λ = [λ0, λ1, . . . , λi]
Tr;

Else [At the end of Step (2), update variables for next i.]

γ ← γnew; γnew
i+1 ← 1/∆; φ← φnew; ψ ← ψnew; α← αnew;

For j = 1, . . . , i do

γnew
j ←

(

γnew
i+1 /γi

)

bj;

Kaltofen/Lee 20 JSC 36 (’03), 365-400

Lemma 12 In the modified Gohberg/Koltracht algorithm, if we encounter
∆ = 0 for some i ≥ 1, then at the end of Step (2), we have

Ai+1λ = [0, · · · , 0]Tr.

PROOF. If ∆ = 0, λi = 1 and λj = bj/γ
new
i+1 for 0 ≤ j ≤ i − 1. The matrix

multiplication of the (i+ 1)-th row in Ai+1 and λ is

[ãi+1,1, · · · , ãi+1,i+1]λ = ãi+1,i+1 +
i∑

j=1

ãi+1,j

(
bj
γnew

i

)

︸ ︷︷ ︸

ν

= ∆ = 0.

When 1 ≤ j ≤ i, the matrix multiplications of the j-th row and λ are all zero
due to the definition of λ (Gohberg and Koltracht 1989, pp. 139–140). 2

Theorem 13 In the modified Gohberg/Koltracht algorithm, for any i ≥ 1, if
det(Aj) 6= 0 for all 1 ≤ j ≤ i, then ∆ = 0 if and only if det(Ai+1) = 0.

PROOF. If det(Aj) 6= 0 for all 1 ≤ j ≤ i and ∆ 6= 0, Ai+1 can be inverted
by the Gohberg/Koltracht algorithm and det(Ai+1) 6= 0. To prove another
direction: if ∆ = 0, from Lemma 12, λ 6= 0 and Ai+1λ = 0. As a result,
det(Ai+1) = 0. 2

Now back to the sparse interpolation in the Chebyshev basis. Without an input
as t̃, using the discrepancy ∆ = 0 as the termination test, the early termination
can be implemented in interpolating f̃(x). Notice that deg f = deg f̃ .

Theorem 14 If p is chosen randomly and uniformly from a subset S of the
domain, which is assumed to be an integral domain, and that all the elements
in S are larger than 1, then for ak = f̃(Tk(p)) with k ≥ 0 the following matrix

Ai =

2a0 2a1 . . . 2ai−1

2a1 a2 + a0 . . . ai + ai−2

...
...

. . .
...

2ai−1 ai + ai−2 . . . a2i−2 + a0

becomes singular the first time at i = t̃+ 1 with probability no less than

1−
(t̃− 1)(2t̃2 + 5t̃+ 6) deg f̃

6 ·#(S)
.

Kaltofen/Lee 21 JSC 36 (’03), 365-400

PROOF. From (18) we have deg(detAi) ≤ i2 deg f̃ . If detAi 6= 0 until i =

t̃+ 1 with detA1 6= 0 provided, we need to avoid hitting a zero of
∏t̃

i=2 detAi,
whose degree is no more than (t̃− 1)(2t̃2 + 5t̃+ 6) deg f̃/6. 2

Because the modified Gohberg/Koltracht algorithm requires all principal lead-
ing matrices non-singular, we cannot directly apply the higher thresholds for
early termination here. To exploit the threshold implementation, we refer to
the approach of (Delsarte et al. 1985). We can also further check λj at addi-
tional k = i, i+ 1, . . . for

∑i−1
j=0 λj(aj+k + a|j−k|) = −(ai+k + a|i−k|).

Algorithm: Early Termination Sparse Interpolation <Chebyshev

Basis>

Input: I f(x): a univariate black box polynomial.

Output:I cj and δj: f(x) =
∑t

j=1 cjTδj
(x) with high probability.

I Or an error message: if the procedure fails to complete.

(1) [The first leading principal submatrix is non-singular.]

Pick a random element p > 1.
If a0 = f(T0(p)) = 0 then

pick a random p̃c 6= 0; a0 ← p̃c; f(x)← f(x) + pc;

else pc = 0; f(x)← f(x) + pc;

(2) [The early termination in the modified Gohberg/Koltracht algorithm.]

For i = 1, 2, . . .

Perform the modified Gohberg/Koltracht algorithm on the i×i matrix
[ãk,l] with ãk,l = ak+l−2 + a|k−l| and ai = f(Ti(p)).

If ∆ = 0, then returns λj that define Λ(z); break out of the loop.

(3) [Determine δj.]

Compute all the roots of Λ(z) in the domain of p.
If Λ(z) does not completely factor, or not all the roots are distinct, then

the early termination was false.

else determine δj from Tδj
(p), Tδj

(p) are the roots of Λ(z):

again, the recovery of δj might fail.

(4) [Compute the coefficients cj.]

Solve a transposed Vandermonde-like system (Lakshman Y. N. and Saun-
ders 1995, the discussion on pp. 394–396).
Recover the input f(x) by removing pc from the result.

Remarks: Adding pc 6= 0 to f might introduce one more term to f (the
constant), which causes extra overhead in the sparse interpolation algorithm.
Nevertheless, we consider such overhead to be minor.

Georg Heinig has pointed out to us that the relation of the entries in the
Toeplitz summand with the Hankel part in (15) may allow the use of algo-

Kaltofen/Lee 22 JSC 36 (’03), 365-400

rithms for discrete trigonometric transforms, which could yield a speedup over
the general Gohberg/Koltracht algorithm.

4 Racing Algorithms and Early Termination

4.1 Early termination in racing algorithms

A dense algorithm evaluates the target polynomial at sufficiently many distinct
points; performing a sparse algorithm does not prevent us from simultaneously
interpolating the same points through a dense one. Therefore, we propose rac-
ing algorithms: for every black box probe, we apply both algorithms; whenever
either racer algorithm terminates via early termination, the overall algorithm
terminates. Yet in Theorem 1, an early termination dense algorithm inter-
polates on a sequence p0, p1, . . ., where each pi is randomly generated. While
in the case of sparse algorithms the sequence is constructed by a random p:
p, p2, p3, . . . in the standard basis; p, p+ 1, p+ 2, . . . in the Pochhammer basis;
and T0(p), T1(p), T2(p), . . . in the Chebyshev basis. We need to show the early
termination for a dense algorithm is also true when the evaluation points are
constructed by a random p from a sparse algorithm.

Let Z≥0 denote the set of non-negative integers, and K[p] a polynomial ring.
Consider a generic basis bi for K[p] with i ∈ Z≥0 such that deg(bi) = i and
deg (bibj) = i+ j, and a generic rising factorial power in x for every n ∈ Z≥0:
x{n} = (x− b0)(x− b1) · · · (x− bn−1). By Newton interpolation, a polynomial
f(x) with degree n interpolated at b0, . . . , bn, a generic basis constructed by
p, is represented as

f(x) =
n∑

i=0

aix
{i} where ai ∈ K[p]. (19)

Our purpose is to show that all ai are non-zero polynomials in K[p] for 0 ≤
i ≤ n (Theorem 18). Therefore, when p is random, with high probability the
first ai = 0 occurs at i = n+ 1 and f(x) is interpolated as (19). Now compare
f(x) in the standard basis and a generic rising factorial basis:

f(x) =
n∑

i=0

aix
i =

n∑

i=0

aix
{i}.

The coefficients c
(n)
i , that depend on bj, define the transformation from a

generic factorial basis to the standard basis:

xn =
n∑

i=0

c
(n)
i x{i}.

Kaltofen/Lee 23 JSC 36 (’03), 365-400

Lemma 15 For any integer k > 1 and every 1 ≤ j ≤ k − 1,

x
j
∑

s=0

c(k−1)
s x{s} = c

(k−1)
j x{j+1} + bjc

(k−1)
j x{j} + x

j−1
∑

s=0

c(k−1)
s x{s}.

PROOF. Replace x by (x− bj + bj) in x
∑j

s=0 c
(k−1)
s x{s}:

(x−bj + bj)
j
∑

s=0

c(k−1)
s x{s} = (x− bj)

j
∑

s=0

c(k−1)
s x{s} + bj

j
∑

s=0

c(k−1)
s x{s}

=c
(k−1)
j x{j}(x− bj) + x

j−1
∑

s=0

c(k−1)
s x{s} + bj

(

−
j−1
∑

s=0

c(k−1)
s x{s} +

j
∑

s=0

c(k−1)
s x{s}

)

=c
(k−1)
j x{j+1} + bjc

(k−1)
j x{j} + x

j−1
∑

s=0

c(k−1)
s x{s}. 2

Theorem 16 For n ≥ 1, c(n)
n = 1, c

(n)
0 = b0c

(n−1)
0 , and for n > s > 0,

c(n)
s = bsc

(n−1)
s + c

(n−1)
s−1 .

PROOF. Repeatedly apply Lemma 15 for j from n− 1 to 1:

x · xn−1 = x
n−1∑

s=0

c(n−1)
s x{s} = c

(n−1)
n−1 x{n} + bn−1c

(n−1)
n−1 x{n−1} + x

n−2∑

s=0

c(n−1)
s x{s}

= c
(n−1)
n−1 x{n} +

(

bn−1c
(n−1)
n−1 + c

(n−1)
n−2

)

x{n−1} + · · ·

+
(

bsc
(n−1)
s + c

(n−1)
s−1

)

x{s}

+ · · ·+
(

b1c
(n−1)
1 + c

(n−1)
0

)

x{1} + b0c
(n−1)
0 x{0} =

n∑

s=0

c(n)
s x{s}.

Through comparison, c
(n)
0 = b0c

(n−1)
0 and c(n)

s = bsc
(n−1)
s + c

(n−1)
s−1 for 0 < s <

n. To prove 1 = c(n)
n is easy because c(n)

n = c
(n−1)
n−1 and c

(0)
0 = 1. 2

Now we define c(n)
s = 0 for all s > n and consider c(n)

s , bj as polynomials in p.

Theorem 17 For any integer n > 0, and any integer s such that n > s > 0,

deg (c(n)
s (p)) = s · (n− s).

Kaltofen/Lee 24 JSC 36 (’03), 365-400

PROOF. Repeatedly apply Theorem 16:

c(n)
s = bsc

(n−1)
s + c

(n−1)
s−1 = bs

(

bsc
(n−2)
s + c

(n−2)
s−1

)

+
(

bs−1c
(n−2)
s−1 + c

(n−2)
s−2

)

=
(

bs
)2
(

bsc
(n−3)
s + c

(n−3)
s−1

)

+ bs

(

bs−1c
(n−3)
s−1 + c

(n−3)
s−2

)

+ · · ·

=
(

bs
)n−s

c(s)s + lower degree terms in p.

Since deg(bibj) = i+ j and c(s)s = c
(s−1)
s−1 = 1, deg (c(n)

s (p)) = s · (n− s). 2

From Theorem 17, deg c(n+1)
s > deg c(n)

s for any integer n > 0 and n > s > 0.

Theorem 18 Let f(x) =
∑n

i=0 aix
i =

∑n
i=0 aix

{i}. If an 6= 0, ai is a non-zero
polynomial in p for 0 < i ≤ n. Moreover, an = an.

PROOF. Expand f(x) =
∑n

i=0 aix
i and collect the terms with respect to

x{i}:

n∑

i=0

(

ai

i∑

j=0

c
(i)
j x
{j}
)

= an

(n∑

j=0

c
(n)
j x{j}

)

+ · · ·+ a1

(1∑

j=0

c
(1)
j x{j}

)

+ a0x
{0}

=anc
(n)
n x{n} + · · ·+

(

anc
(n)
0 + · · ·+ a0c

(0)
0

)

x{0} =
n∑

i=0

(n−i∑

j=0

an−jc
(n−j)
i

)

x{i}.

Comparing the coefficients, we have ai =
∑n−i

j=0 an−jc
(n−j)
i for 0 < i ≤ n, and

an = anc
(n)
n = an with c(n)

n = 1. The highest degree term in c
(n)
i occurs only

once in ai = anc
(n)
i + · · · + aic

(i)
i (see Theorem 17) and an 6= 0, so ai is a

non-zero polynomial in p for 0 < i ≤ n. 2

Now that ai are non-zero polynomials for 0 < i ≤ n = deg f and ai = 0
for i > n, ai(p) = 0 at a random p the first time when i = n + 1 with high
probability.

Theorem 19 (Newton v.s. Ben-Or/Tiwari) If p is randomly picked and
p /∈ {0, 1}, the early termination of Newton interpolation is true if it interpo-
lates on the sequence p1, p2, . . . , pk,

PROOF. For any non-zero value pc, let bi = pc ·p
i and deg (bi) = i. Now that

p is a non-zero random number, assign pc as p and apply Theorem 18. 2

Theorem 20 (Newton v.s. sparse Chebyshev basis interpolation) If
p > 1 is randomly picked, the early termination of Newton interpolation is
true if it interpolates on the sequence T0(p), T1(p), . . ., Tk(p),

Kaltofen/Lee 25 JSC 36 (’03), 365-400

PROOF. Let Ti(p) = bi and apply Theorem 18. 2

Remark: Our racing algorithms match Newton interpolation against a sparse
algorithm on sequence b0(p1), b1(p1), . . . constructed by a random p1. When-
ever the sparse racer terminates first, but unsuccessfully, and the Newton
interpolation has yet finished, we pick another random p2 and construct a
new sequence b0(p2), b1(p2), On this new sequence, we restart the sparse
racer but keep updating the existing Newton interpolant (see Subsection 4.2).
The early termination of Newton interpolation in the “restarting” phase can
be prove by modifying Theorems 19 and 20 by assigning pi in a lexicographic
order: p1 ≺ p2 ≺ · · · .

The sparse interpolation in the Pochhammer basis evaluates a subsequent
values p, p + 1, Since deg(p) = deg(p + 1) = · · · in K[p], Theorem 18
cannot be applied in this case.

Theorem 21 (Newton v.s. sparse Pochhammer basis interpolation)
If p > 0 is randomly picked, the early termination of Newton interpolation is
true if it interpolates on the sequence p, p+ 1, p+ 2,

PROOF. We want to show the coefficient ci in the i-th Newton interpolant
f [i](x) = f [i−1](x)+ci(x−p)(x−p−1) · · · (x−p−i+1) is a non-zero polynomial
in p for 0 ≤ i ≤ deg f = n.

If f is a non-zero polynomial, then c0 = f(p) is a non-zero polynomial in p.
Now consider 0 ≤ i < n, if for every 0 ≤ k ≤ i, ck is a non-zero polynomial in
p and ci+1 is a zero polynomial, then we claim that f [i] = f [i+1] = · · · = f [n]

= f . For otherwise, suppose f [j] is the first interpolant being updated since
f [i+1], that is, cj−1 = 0 for all p and

f [j] = f [i] + cj(x− p)(x− p− 1) · · · (x− p− j + 1) (20)

with cj 6= 0 and i + 1 < j ≤ n. We expand the newly updated term in (20)
with respect to p shifted by 1 as the following:

cj(x− p) · · · (x− p− j + 1) = cj(x− p− j + j)(x− p− 1) · · · (x− p− j + 1)

= cj(x− p− 1) · · · (x− p− j) + cj · j
︸ ︷︷ ︸

cj−1 6=0

·(x− p− 1) · · · (x− p− j + 1).

Therefore, if f is interpolated at p− 1, p, p+ 1, . . ., we have cj−1 6= 0, which
contradicts to the claim that cj−1 = 0 for all p.

On the other hand, because deg f(x) = n > i = deg f [i](x), cn cannot be a
zero polynomial and we have concluded ci 6= 0 for every 0 ≤ i ≤ n. 2

Kaltofen/Lee 26 JSC 36 (’03), 365-400

Remark: The argument for early termination of Newton interpolation in the
“restarting” phase when racing against the sparse Pochhammer basis inter-
polation is such that each pi is randomly generated when a new sequence
pi, pi + 1, . . . is started (cf. Theorem 1).

4.2 Racing algorithms

We now present our racing algorithms. For a univariate black box polyno-
mial f , pick a random p1 and construct b0(p1), b1(p1), . . . as required by the
sparse racer algorithm. On this sequence, interpolate f by the early termina-
tion versions of both Newton interpolation and the sparse algorithm. When-
ever the sparse algorithm successfully terminates earlier, the overall racing
algorithm terminates. If the sparse racer fails while the Newton interpola-
tion is yet unfinished, pick another random p2 and restart the sparse racer
on b0(p2), b1(p2), . . . while continuing the Newton interpolation with the new
sequence. Such restarts can be repeated until either of the algorithms termi-
nates.

Although our racing algorithms do not require a bound on either the degree or
the number of terms, in our implementation an upper bound δ is requested to
confine the overall interpolation efforts (and guard the racing algorithm from
an infinite loop, e.g., when the function values do not correspond to a polyno-
mial). To prevent Newton interpolation from aborting too early, δ should be
no less than deg f(x) + 1 + η, where η is the threshold for Newton interpola-
tion. If we have enough distinct values, in a sparse case the sparse algorithm
might terminate earlier, yet it might fail due to the unlucky numbers and
not finish at all; Newton interpolation might cost more black box probes, but
it always finishes. The overall racing algorithm is superior: it can terminate
earlier whenever it is possible while the termination is guaranteed. Also, the
probability of correctness can be further improved by cross checking the infor-
mation acquired from two different algorithms: for example, the sparse result
cannot be correct when its degree is smaller than the most updated Newton
interpolant.

Algorithm: Racing <Newton v.s. Sparse>

Input: I f(x): a univariate black box polynomial.
I δ: a bound for confining the overall interpolation efforts.
I η: the threshold in Newton interpolation.
I ζ: the threshold in the sparse racer algorithm.

Output:I f̃(x): with high probability, f̃(x) = f(x).
I Or an error message: if the procedure fails.

Kaltofen/Lee 27 JSC 36 (’03), 365-400

(1) 0 6= p random 3 , a0 ← b0(p); ã0 ← a0; new[race] ← false; j ← 0; k ← 0;

Initialize Newton interpolant f
[0]
N at a0: f

{0}
N ← f

[0]
N ;

Initialize the sparse racer algorithm at ã0;

(2) [Interpolate at one more point.]

For i = 1, . . . , δ Do

If new[race] = false then

j ← j + 1; ai ← bj+1(p); ãj ← ai;

Update Newton interpolant f
[i]
N on a0, a1, . . ., ai;

If ai /∈ {a0, . . . , ai−1} then k ← k + 1; f
{k}
N ← f

[i]
N ;

Update the sparse racer algorithm on ã0, ã1, . . ., ãj;

Else

j ← 0; randomly generate a non-zero p from S;

new[race] ← false; ai ← b0(p); ã0 ← ai;

Update Newton interpolation f
[i]
N on a0, a1, . . . , ai;

If ai /∈ {a0, . . . , ai−1} then k ← k + 1; f
{k}
N ← f

[i]
N ;

Initialize the sparse racer algorithm at ã0;

(3) [Check whether any racer finishes.]

If f
{k}
N = f

{k−1}
N = · · · = f

{k−η}
N then break; Return f̃ ← f {k};

Else if the early termination criteria is met ζ times in a row for the
sparse racer, then

(4) Complete the sparse racer algorithm;

If fail to complete, then new[race] ← true;

End For;
If f̃ is not defined then Fail;

5 Hybrids of Zippel Algorithm and Other Improvements

5.1 Prunings and hybrids of Zippel algorithm

Consider a black box polynomial f represented as

f(x1, . . . , xn) =
∑

(e1,...,en)∈J

ce1,...,en
xe1

1 · · · x
en

n , (21)

where 0 6= ce1,...,en
∈ K, J ⊆ (Z≥0)

n. Here #(J) is the number of non-zero
terms in f . The Zippel algorithm (Zippel 1979a) is based on the following
idea: if the representation in (21) is sparse, than during the variable by variable

3 Depending on the sparse racer algorithm, there could be other restrictions on p.

Kaltofen/Lee 28 JSC 36 (’03), 365-400

interpolation, a zero coefficient is the image of a zero polynomial with high
probability.

Algorithm: Zippel (Zippel 1979a, 1990)

Input: I f(x1, . . . , xn): a multivariate black box polynomial over K.
I (x1, . . . , xn): an ordered list of variables in f .
I δ: an upper bound of deg(f).

Output:I

∑

(e1,...,en)∈J ce1,...,en
xe1

1 · · · x
en
n : which equals f with high probability.

I Or an error message: if the procedure fails.

(1) [Initialize the anchor points.]

Randomly pick a2, . . . , an from a finite subset S ⊆ K;

(2) [Interpolate one more variable: with high probability, we now have f(x1,
. . ., xi−1, ai, . . ., an) =

∑

(e1,...,ei−1)∈Ji−1
ce1,...,ei−1

xe1

1 · · · x
ei−1

i−1 , where 0 6=

ce1,...,ei−1
∈ K, Ji−1 ⊂ Z

i−1
≥0 .]

For i = 1, . . . , n Do

[Update the degree upper bound for monomials in xi.]

δi = max{δ − e1 − · · · − ei−1 | (e1, . . . , ei−1) ∈ Ji−1};

[Update the number of monomials in x1, . . . , xi−1.]

ji−1 ← #(Ji−1);

(3) [Interpolate the coefficients of terms in x1, . . . , xi−1 within f . These
coefficients are polynomials in K[xi] with degrees bounded by δi.]

For k = 0, . . . , δi Do

Randomly pick bk from a subset of K;

(4) [Locate the value of every such coefficient polynomial at xi = bk.]

Set up a ji−1 by ji−1 transposed Vandermonde system:

For j = 0, . . . , ji−1 − 1 Do

∑

(e1,...,ei−1)∈Ji−1

γe1,...,ei−1,k(ã
j
1)

e1 · · · (ãj
i−1)

ei−1

= f(ãj
1, . . . , ã

j
i−1, bk, ai+1, . . . , an); (22)

If the system is singular then report ”Failure;”
Else solve for all γe1,...,ei−1,k; (Kaltofen and Lakshman Yagati 1988)

(5) [Interpolate ji−1 many coefficient polynomials in xi from their evalua-
tions at bk, γe1,...,ei−1,k, for 0 ≤ k ≤ δi.]

For every (e1, . . . , ei−1) ∈ Ji−1 Do

Perform Newton interpolation so that

c
[k]
i,(e1,...,ei−1)(xi) ∈ K[xi] and c

[k]
i,(e1,...,ei−1)(bs) = γe1,...,ei−1,s, 0 ≤ s ≤ k;

c
[k]
i,(e1,...,ei−1)(xi)←

k∑

s=0

ci,(e1,...,ei−1),sx
s
i ;

(6) [Prune all the monomials with zero coefficient and update Ji.]
Ji = ∅;

Kaltofen/Lee 29 JSC 36 (’03), 365-400

For every (e1, . . . , ei−1) ∈ Ji−1 and s = 0, . . . , δi Do

If c
[δi]
i,(e1,...,ei−1),s 6= 0 then

ce1,...,ei−1,s ← c
[δi]
i,(e1,...,ei−1),s; Ji ← Ji ∪ {(e1, . . . , ei−1, s)};

Randomly pick ãi from a subset of K;

Introduce the homogenizing variable x0 (Dı́az and Kaltofen 1998) into f in
(21), and define f̃ = f(x0x1, . . . , x0xn) =

∑

(e1,...,en)∈J ce1,...,en
xe1

1 · · · x
en
n x

e1+···+en

0 .

By interpolating f̃(x0, a1, . . ., an) in x0 via Zippel’s algorithm, we can prune
the support structure of f in f0(x0) ∈ K[x0].

Let f0(x0) =
∑d

k=0 γ0,kx
k
0. Then ck(a1, . . . , an) = γ0,k, and

ck(x1, . . . , xn) =
∑

e1+···+en=k,(e1,...,en)∈J

ce1,...,en
xe1

1 · · · x
en

n .

Every term in ck is of degree k in K[x1, . . . , xn] and deg f0 in K[x0] evaluates
deg f in K[x1, . . . , xn]. The degree of every non-zero term in f0(x0) provides
an upper bound for the degrees of all the intermediate terms of its coefficient
polynomial.

Now, we refine the pruning in (Dı́az and Kaltofen 1998). Comparing to Zippel’s
idea, we do two more types of pruning so that we may further reduce the size
of the transposed Vandermonde system in (22).

During the process of interpolating a homogenized polynomial via Zippel’s
algorithm, in Step (2) with high probability we have

f̃(x0, x1, . . . , xi−1, ai, . . . , an) =
∑

(e0,...,ei−1)∈Ji−1

ce0,...,ei−1
xe1

1 · · · x
ei−1

i−1 x
e0

0 ,

where 0 6= ce0,...,ei−1
∈ K, Ji−1 ⊂ (Z≥0)

i. For every term with (e0, . . . , ei−1) ∈
Ji−1 and e1 + · · · + ei−1 = e0, the degree of the coefficient polynomial in
variables x1,. . ., xi−1 has already reached the total degree upper bound e0.
That is, ce0,...,ei−1

xe1

1 · · · x
ei−1

i−1 x
e0

0 is an actual term in f̃ . We let gi−1(x0, . . . , xn)
denote a polynomial summing up all such fully interpolated terms, and form
J ′i−1 from Ji−1 by removing all (e0, . . . , ei−1)’s such that e1 + · · · + ei−1 = e0.
The equation (22) in Step (4) of Zippel algorithm now becomes

f(ãj
0, . . . ,ã

j
i−1, bk, ai+1, . . . , an)

=
∑

(e0,...,ei−1)∈J ′

i−1

γe0,...,ei−1,k(ã
j
1)

e1 · · · (ãj
i−1)

ei−1(ãj
0)

e0

+ gi−1(ã
j
0, . . . , ã

j
i−1, bk, ai+1, . . . , an).

Since #(J ′i−1) ≤ #(Ji−1), by subtracting gi−1 from both sides of (22), we may
reduce the size of the transposed Vandermonde system. All terms in gi−1 are

Kaltofen/Lee 30 JSC 36 (’03), 365-400

permanently pruned since they have been fully interpolated and will not be
further interpolated in xi, . . . , xn.

On the other hand, when interpolating coefficients of the terms in x0,. . .,xi−1

from f̃(x0, . . . ,xi−1, xi, ai+1, . . . , an), some coefficients might be interpolated
via early termination before the degree bound is reached, and can be taken out
of the loop in Step (3) before other coefficient polynomials are interpolated.
As a result, the size of the system (22) may be further reduced. Those terms
are temporarily pruned from the interpolation in xi, and will be interpolated
later in xi+1, . . ., xn.

Without a total degree bound supplied as an input, the permanent prunings
depend on the interpolation of homogenizing variable, while the temporary
prunings can be carried out regardless the introduction of the homogenizing
variable.

Our hybrids of Zippel algorithm use Zippel’s variable by variable method as the
outer loop, and introduce a homogenizing variable to perform permanent and
temporary prunings. In our implementation, the homogenization modification
can be “turned off” (Subsection 6.3), and a racing algorithm is employed
in each univariate interpolation. Which takes advantage of better pruning
techniques and more efficient embedded univariate interpolations.

5.2 Modular techniques in the univariate Ben-Or/Tiwari algorithm

In the modular implementation, the hybrids of Zippel algorithm may provide
another advantage: when racing Newton against Ben-Or/Tiwari, the size of
modulus required by the Ben-Or/Tiwari algorithm could be greatly reduced.

In order to control the size of the coefficients in the error locator polynomial
of the Berlekamp/Massey algorithm that is embedded in the Ben-Or/Tiwari
algorithm, Kaltofen et al. (1990) apply modular techniques for finding Λ(z)
and locating the roots of Λ(z). However, to provide a modular image of Λ(z)
sufficient for the recovery of all terms βi, the modulus q needs to be sufficiently
large. They use a modulus pk that is larger than each bj, the value of term
βj evaluated a prime number. Consider a multivariate polynomial f and let
d = deg f . Since 2 is the smallest prime, a sufficiently large modulus pk is
at least 2d. This means when deg f is relatively large, we need to perform all
computations modulo an integer of length proportional to the degree, even
though the coefficients could be of a much smaller size.

The modulus can be reduced by interpolating a subset of variables at a time.
However, in the univariate case with d = deg f(x), a prime q larger than
d (instead of 2d) can already provide a sufficiently large modulus. Namely,

Kaltofen/Lee 31 JSC 36 (’03), 365-400

we evaluate the single variable x at a primitive root % and recover the term
exponents as the discrete logarithms of bj. There are φ(q − 1) primitive roots
modulo q, with u/loglogu = O(φ(u)) for any integer u and φ denoting Euler’s
totient function (Hardy and Wright 1979, sec. 18.4). Even if x is evaluated at
%̃ that is not a primitive root, as long as the order of %̃ is larger than d, we
still can recover all the term exponents in f (also see Subsection 6.3).

Our algorithm picks a random residue % for x and for each bk tries the expo-
nents ek = 0, 1, 2, . . . until %ek ≡ bk (mod q). The method produces an incor-
rect term exponent if for %, %2, . . ., %λq(%) ≡ 1 (mod q) we have ek ≥ λq(%).
However, such false exponents highly likely lead to inconsistencies in later
steps: a possible immediate inconsistency is to the degrees of the concurrent
Newton interpolant. In that case, the univariate result is recovered by New-
ton or another restarted Ben-Or/Tiwari interpolation. If the false exponent is
still not caught, with high likelihood the inconsistency shows up later, at the
latest at the comparison of the final result with the black box evaluated at an
additional random point (see Subsection 6.2).

We quantify the trade-off between the size of the modulus and the number of
black box probes in the Ben-Or/Tiwari versus the univariate Ben-Or/Tiwari
within Zippel. With early termination and ignoring the size of coefficients,
in the former we have q > 2deg f versus q = O(deg f), while the number of
probes is 2t + ζ versus O(n(2t + ζ)). Therefore, if the degrees are small but
there are many variables, the pure Ben-Or/Tiwari may still out-perform the
hybrid of Zippel’s algorithm. We add that at any stage in the variable by
variable Zippel’s method, the rest of the variables could be interpolated by a
multivariate Ben-Or/Tiwari algorithm.

Note that for a small finite coefficient field, say Z2, we can switch to the
coefficient domain Z2[xn], where xn is the last variable, and proceed modulo
irreducible polynomials in Z2[xn].

6 Maple Implementation

The ProtoBox package is the Maple implementation of some of our algorithms:
the early terminations with thresholds in the Newton and Ben-Or/Tiwari algo-
rithms, the racing algorithm that matches Newton against the Ben-Or/Tiwari
algorithm, its hybrid of Zippel with pruning, and the homogenization modifi-
cation.

We test ProtoBox to interpolate black box polynomials in Table 1. Note that
f1, f2 are from (Zippel 1979b, p. 100), and f3, f4 from (Zippel 1979b, p. 102).

Kaltofen/Lee 32 JSC 36 (’03), 365-400

Table 1. Polynomials used in the tests.

f1(x1, . . . , x10) = x2
1x

3
3x4x6x8x

2
9 + x1x2x3x

2
4x

2
5x8x9 +x2x3x4x

2
5x8x9

+x1x
3
3x

2
4x

2
5x

2
6x7x

2
8 +x2x3x4x

2
5x6x7x

2
8

f2(x1, . . . , x10) = x1x
2
2x

2
4x8x

2
9x

2
10 + x2

2x4x
2
5x6x7x9x

2
10 + x2

1x2x3x
2
5x

2
7x

2
9

+x1x
2
3x

2
4x

2
7x

2
9 +x2

1x3x4x
2
7x

2
8

f3(x1, . . . , x10) = 9x3
2x

3
3x

2
5x

2
6x

3
8x

3
9 + 9x3

1x
2
2x

3
3x

2
5x

2
7x

2
8x

3
9 + x4

1x
4
3x

2
4x

4
5x

4
6x7x

5
8x9

+10x4
1x2x

4
3x

4
4x

4
5x7x

3
8x9 + 12x3

2x
3
4x

3
6x

2
7x

3
8

f4(x1, . . . , x10) = 9x2
1x3x4x

3
6x

2
7x8x

4
10 + 17x3

1x2x
2
5x

2
6x7x

3
8x

4
9x

3
10 + 3x3

1x
2
2x

3
6x

2
10

+17x2
2x

4
3x

2
4x

4
7x

3
8x9x

3
10 + 10x1x3x

2
5x

2
6x

4
7x

4
8

f5(x1, . . . , x50) =
∑50

i=1 x50
i

f6(x1, . . . , x5) =
∑5

i=1(x1 + x2 + x3 + x4 + x5)
i

f7(x1, x2, x3) = x20
1 + 2x2 + 2x2

2 + 2x3
2 + 2x4

2 + 3x20
3

6.1 Black box probes

In the racing algorithm that runs Newton against Ben-Or/Tiwari, for purpose
of comparison we have “turned off” either of the competing algorithms by
setting the corresponding threshold to∞ and thus forced all the interpolations
through the remaining active one.

In the hybrids of Zippel, we compare the black box probes required in different
embedded univariate interpolations: Newton, Ben-Or/Tiwari, and the racing
of Newton against Ben-Or/Tiwari (all with threshold one). We use larger
moduli to reduce the chance of hitting unlucky numbers that might interfere
with the performance of each algorithm. We have run each algorithm ten times
for each polynomial with different random numbers and taken the average of
the number of black box probes needed. The results are listed in Table 2. Note
that racing Ben-Or/Tiwari against Newton may yield a count less than the
minimum of using either exclusively. This is because in Zippel’s variable by
variable approach, in each univariate interpolation subproblem the winners
might alternate between Ben-Or/Tiwari and Newton.

6.2 Thresholds

In order to further improve or control the performance, we have implemented
additional thresholds in ProtoBox, aside from the thresholds η and ζ for early
termination.

Kaltofen/Lee 33 JSC 36 (’03), 365-400

Table 2. Black box probes needed for different hybrids of Zippel’s algorithm.

mod Newton Ben-Or/Tiwari Racing

f1 100003 147 137 126

f2 100003 146 143 124

f3 100003 209 143 133

f4 100003 188 149 133

f5 100000007 2652 251 251

f6 100000007 965 1256 881

f7 100003 94 46 41

One way to increase confidence in the interpolation result is to compare the
value of the output with that of the black box polynomial at some random
points. If a disagreement is discovered at one point, the result is declared
invalid. The number of random points for the post test is an optional argument
“posttest thresh,” which by default is zero.

Our probabilistic algorithms generate random scalars at different stages; some-
times an unlucky choice in an intermediate step will cause the overall algo-
rithm to abort, although that could be remedied by simply trying another set
of random elements in that step. Yet, to avoid a possibly infinite loop, as a
principle, such retries shall be bounded in number. Such is the situation in
Zippel’s algorithm: it is possible that all the terms in previous variables are
correctly interpolated, but in (22) two different terms map to a same value
ãe1

1 · · · ã
ei−1

i−1 = ãē1

1 · · · ã
ēi−1

i−1 at unlucky ãk and the Vandermonde system in (22)
becomes singular. We experienced such failure for large results at the last
variable, and all was lost. Therefore the optional argument “mapmon thresh,”
zero by default, defines the number of retries with new ã1, . . . , ãi−1.

We have to delay the updates of Newton interpolant when a point is repeated.
In order to avoid incomplete interpolations due to repeated points, we ex-
tend the upper bound for each univariate interpolation loop by the optional
argument “rndrep thresh” that is zero by default.

We have tested our new thresholding techniques on small moduli, where the
benefits are most apparent. There are now five different thresholds and we
have tested the three settings listed in Table 3. Note that combination 1 is the
default in ProtoBox.

Figures 2 through 5 display the results of the hybrid of Zippel’s algorithm
that races Newton against Ben-Or/Tiwari for interpolating f1, f2, f3, and f4.
We have tested each threshold combination for each modulus for 100 random

Kaltofen/Lee 34 JSC 36 (’03), 365-400

Table 3. Different combinations of thresholds used in the tests.

Combination η ζ posttest thresh mapmon thresh rndrep thresh

1 1 1 0 0 0

2 2 2 1 2 2

3 3 3 2 4 4

seeds. The height of each rectangle at every modulus, solid and airy parts
combined, reflects the number of non-false results in 100 runs, which are either
correct results (indicated as the solid part) or error messages (airy part of the
rectangle). The balance to full height 100 is the number of times that the
algorithm returned an incorrect polynomial. The three slices on each modulus
reflect the performance under the three threshold combinations in Table 3,
with combinations 1 through 3 being listed from left to right.

We observe that higher thresholds might yield less success, e.g., in Figure 2
for p = 97 threshold combination 2 vs. 3. There is, of course, statistically
variation possible, but we note that higher early termination thresholds may
cause the algorithm to abort for lack of new test points while holding a correct
partial result. In light of the Schwartz-Zippel lemma it appears paradoxical
that modulo certain larger primes we see a significantly lower yield in our
tables. We provide an explanation in the next section.

0

10

20

30

40

50

60

70

80

90

100

31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103

Fig. 2. Interpolations of f1 in different threshold combinations and moduli after 100
runs.

Kaltofen/Lee 35 JSC 36 (’03), 365-400

0

10

20

30

40

50

60

70

80

90

100

31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103

Fig. 3. Interpolations of f2 in different threshold combinations and moduli after 100
runs.

0

10

20

30

40

50

60

70

80

90

100

31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103

Fig. 4. Interpolations of f3 in different threshold combinations and moduli after 100
runs.

6.3 The small modulus heuristic

For multivariate polynomials whose degree in each variable is much lower than
the total degree, some very small moduli might suffice if we ”turn off” the
homogenization modification. Table 4 presents such heuristic of interpolations

Kaltofen/Lee 36 JSC 36 (’03), 365-400

0

10

20

30

40

50

60

70

80

90

100

31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103

Fig. 5. Interpolations of f4 in different threshold combinations and moduli after 100
runs.

on some very small moduli. For brevity, “posttest thresh” is denoted as τ ,
“mapmon thresh” as κ, and “rndrep thresh” as γ. After 100 runs, the column
under “=” records the times a correct result is returned, under “!” an error
message, and under “6=” a false result. Note that for modulo 17, two terms in
f4 are zero.

Table 4. Interpolations on small moduli without homogenization modification.

Thresholds mod 11 mod 13 mod 17 mod 19

η, ζ τ κ, γ = 6= ! = 6= ! = 6= ! = 6= !

f1 2 2 6 28 2 70 30 0 70 60 0 40 44 1 55

f2 2 2 6 8 1 91 26 0 74 42 0 58 52 0 48

f3 2 2 6 7 1 92 2 0 98 20 0 80 13 1 86

f4 2 2 6 5 0 95 0 1 99 39 0 61 17 0 83

The Ben-Or/Tiwari algorithm requires a field element that has enough distinct
values for its powers in order to recover different terms (see Subsection 5.2).
Therefore, the total number of residues of high order directly affects the success
rate of the univariate Ben-Or/Tiwari algorithm. 4 Figure 6 displays the order
of each residue modulo 11 and modulo 13. The minimal orders required for
different polynomials are indicated as dotted lines. For f3 and f4, there are

4 We owe this observation to James H. Davenport.

Kaltofen/Lee 37 JSC 36 (’03), 365-400

fewer elements of sufficient order modulo 13 than modulo 11.

Order

Element
0 1 2 3 4 5 6 7 8 9 10 11 12 13

1
2
3
4
5
6
7
8
9

10
11
12
13

f
f
f
f

2
1
4
3

Order

Element
0 1 2 3 4 5 6 7 8 9 10 11 12 13

1
2
3
4
5
6
7
8
9

10
11
12
13

f
f
f
f
1
2

3
4

Fig. 6. The order of residues modulo 11 and 13, and the minimal orders required
for interpolating different polynomials through the univariate Ben-Or/Tiwari algo-
rithm.

Acknowledgment of Support

This material is based on work supported in part by the National Science Foun-
dation under Grant Nos. DMS-9977392, CCR-9988177, and CCR-0113121
(Kaltofen) and by the Natural Sciences and Engineering Research Council of
Canada, the Ontario Research & Development Challenge Fund, and Maplesoft
(Lee).

References

Ben-Or, M., Tiwari, P., 1988. A deterministic algorithm for sparse multivariate
polynomial interpolation. In: Proc. Twentieth Annual ACM Symp. Theory
Comput. ACM Press, New York, N.Y., pp. 301–309.

Delsarte, P., Genin, Y. V., Kamp, Y. G., 1985. A generalization of the Levin-
son algorithm for Hermitian Toeplitz matrices with any rank profile. IEEE
Trans. Acoustics, Speech, and Signal Process. assp-33 (4), 964–971.

DeMillo, R. A., Lipton, R. J., 1978. A probabilistic remark on algebraic pro-
gram testing. Information Process. Letters 7 (4), 193–195.

Dı́az, A., Kaltofen, E., 1998. FoxBox a system for manipulating symbolic
objects in black box representation. In: Gloor, O. (Ed.), Proc. 1998 Internat.
Symp. Symbolic Algebraic Comput. (ISSAC’98). ACM Press, New York, N.
Y., pp. 30–37.

Dress, A., Grabmeier, J., 1991. The interpolation problem for k-sparse poly-
nomial and character sums. Adv. Appl. Math 12, 57–75.

Emiris, I. Z., 1998. A complete implementation for computing general dimen-
sional convex hulls. Int. J. Comput. Geom. Appl. 8 (2), 223–254.

Kaltofen/Lee 38 JSC 36 (’03), 365-400

Freeman, T. S., Imirzian, G., Kaltofen, E., Lakshman Yagati, 1988. Dag-

wood: A system for manipulating polynomials given by straight-line pro-
grams. ACM Trans. Math. Software 14 (3), 218–240.

Gantmacher, F. R., 1977. The theory of matrices. Vol. 1. Chelsea publishing
company.

Giesbrecht, M., Kaltofen, E., Lee, W.-s., 2002. Algorithms for computing the
sparsest shifts for polynomials via the Berlekamp/Massey algorithm. In:
Mora, T. (Ed.), Proc. 2002 Internat. Symp. Symbolic Algebraic Comput.
(ISSAC’02). ACM Press, New York, N. Y., pp. 101–108.

Giesbrecht, M., Kaltofen, E., Lee, W.-s., 2003. Algorithms for computing
sparsest shifts of polynomials in power, Chebychev, and Pochhammer bases.
J. Symbolic Comput. To appear, 27 pages. In the special issues on papers
of the 2002 Internat. Symp. Symbolic Algebraic Comput.

Gohberg, I., Koltracht, I., 1989. Efficient algorithm for Toeplitz plus Hankel
matrices. Integral Equations and Operator Theory 12, 136–142.

Grigoriev, D. Y., Karpinski, M., Singer, M. F., 1990. Fast parallel algorithms
for sparse multivariate polynomial interpolation over finite fields. SIAM J.
Comput. 19 (6), 1059–1063.

Grigoriev, D. Y., Karpinski, M., Singer, M. F., 1991. The interpolation prob-
lem for k-sparse sums of eigenfunctions of operators. Adv. Appl. Math. 12,
76–81.

Grigoriev, D. Y., Karpinski, M., Singer, M. F., 1994. Computational complex-
ity of sparse rational function interpolation. SIAM J. Comput. 23, 1–11.

Hardy, G. H., Wright, E. M., 1979. An Introduction to the Theory of Numbers,
5th Edition. Oxford Univ. Press, Oxford.

Kaltofen, E., Lakshman Y. N., Wiley, J. M., 1990. Modular rational sparse
multivariate polynomial interpolation. In: Watanabe, S., Nagata, M. (Eds.),
Proc. 1990 Internat. Symp. Symbolic Algebraic Comput. (ISSAC’90). ACM
Press, pp. 135–139.

Kaltofen, E., Lakshman Yagati, 1988. Improved sparse multivariate poly-
nomial interpolation algorithms. In: Gianni, P. (Ed.), Symbolic Algebraic
Comput. Internat. Symp. ISSAC ’88 Proc. Vol. 358 of Lect. Notes Comput.
Sci. Springer Verlag, Heidelberg, Germany, pp. 467–474.

Kaltofen, E., Lee, W.-s., Lobo, A. A., 2000. Early termination in Ben-
Or/Tiwari sparse interpolation and a hybrid of Zippel’s algorithm. In:
Traverso, C. (Ed.), Proc. 2000 Internat. Symp. Symbolic Algebraic Comput.
(ISSAC’00). ACM Press, New York, N. Y., pp. 192–201.

Kaltofen, E., Lobo, A., 1996. On rank properties of Toeplitz matrices over
finite fields. In: Lakshman Y. N. (Ed.), Proc. 1996 Internat. Symp. Symbolic
Algebraic Comput. (ISSAC’96). ACM Press, New York, N. Y., pp. 241–249.

Kaltofen, E., Trager, B., 1990. Computing with polynomials given by black
boxes for their evaluations: Greatest common divisors, factorization, separa-
tion of numerators and denominators. J. Symbolic Comput. 9 (3), 301–320.

Lakshman Y. N., Saunders, B. D., 1995. Sparse polynomial interpolation in
non-standard bases. SIAM J. Comput. 24 (2), 387–397.

Kaltofen/Lee 39 JSC 36 (’03), 365-400

Lee, W.-s., Dec. 2001. Early termination strategies in sparse interpolation algo-
rithms. Ph.D. thesis, North Carolina State Univ., Raleigh, North Carolina,
107 pages.

Massey, J. L., 1969. Shift-register synthesis and BCH decoding. IEEE Trans.
Inf. Theory it-15, 122–127.

Prony, R., Floréal et Prairial III (1795). Essai expérimental et analytique
sur les lois de la Dilatabilité des fluides élastique et sur celles de la Force
expansive de la vapeur de l’eau et de la vapeur de l’alkool, à différentes
températures. J. de l’École Polytechnique 1, 24–76, r. Prony is Gaspard(-
Clair-François-Marie) Riche, baron de Prony.

Schwartz, J. T., 1980. Fast probabilistic algorithms for verification of polyno-
mial identities. J. ACM 27, 701–717.

Wiedemann, D., 1986. Solving sparse linear equations over finite fields. IEEE
Trans. Inf. Theory it-32, 54–62.

Zilic, Z., Radecka, K., 1999. On feasible multivariate polynomial interpolations
over arbitrary fields. In: Dooley, S. (Ed.), ISSAC 99 Proc. 1999 Internat.
Symp. Symbolic Algebraic Comput. ACM Press, New York, N. Y., pp. 67–
74.

Zippel, R., 1979a. Probabilistic algorithms for sparse polynomials. In: Proc.
EUROSAM ’79. Vol. 72 of Lect. Notes Comput. Sci. Springer Verlag, Hei-
delberg, Germany, pp. 216–226.

Zippel, R., 1990. Interpolating polynomials from their values. J. Symbolic
Comput. 9 (3), 375–403.

Zippel, R. E., Sep. 1979b. Probabilistic algorithms for sparse polynomials.
Ph.D. thesis, Massachusetts Inst. of Technology, Cambridge, USA.

Kaltofen/Lee 40 JSC 36 (’03), 365-400

