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1 Introduction

Let f(x1, . . . , xn) =
∑r

i=1 uix
di,1

1 · · · xdi,n
n ∈ D[x1, . . . , xn] be a multivariate poly-

nomial whose coefficients are in an integral domain D. A sparsest shift within
S is a vector (θ1, . . . , θn) ∈ S such that the number of (shifted) terms is
minimized as τ in

f(x1, . . . , xn) =
τ∑

i=1

γi(x1 + θ1)
δi,1 · · · (xn + θn)δi,n and γi 6= 0.

The sparsest shifts might not be unique: for f = x2 + x + 1 ∈ D[x] and K the
algebraic closure of D, there are three sparsest shifts in K with τ = 2, namely
θ = −1/2, θ = ρ1 and θ = ρ2 where f = (x − ρ1)(x − ρ2). However, in the
univariate case Lakshman Y. N. and Saunders (1996) give a sufficient condition
for the uniqueness of the sparsest shift. While Grigoriev and Lakshman (2000)
give some generalizations of the uniqueness properties in the multivariate case,
we provide a stronger result in the univariate case.

Sparse shifts can dramatically reduce the size of a symbolic expression. A
classical example, by Joel Moses, is

∫

1 + (x + 1)ndx = x + (x + 1)n+1/(n +
1). Sparse shifts can be useful when interpolating the black box polynomial
outputs of the algorithms in (Kaltofen and Trager 1990), say the black box
for the irreducible factors of a matrix determinant with symbolic entries. It is
possible that a sparse shift can make a factor manageable, while the standard
representation, in Knuth’s (1997) words, “would fill the universe.” Algorithms
for computing a sparse shift could therefore be considered simplification tools.

We give a new class of algorithms for efficiently computing the sparsest shifts.
Our algorithms are based on the early termination version of sparse interpola-
tion algorithms (Kaltofen et al. 2000; Kaltofen and Lee 2003), which capture
the sparsity of the target polynomial in a designated basis when the early
termination occurs. The main idea is that for a symbolic set of interpolation
points, a shift must be a root of a discrepancy that is used as the early termi-
nation test; a sparsest shift is the first such zero to occur. We note that our
approach is similar to that of Grigoriev and Karpinski (1993), who use Wron-
skians (Grigoriev et al. 1994) in place of discrepancies. Here we can assume
that the input polynomial f is being interpolated and we are given a black
box procedure for its evaluation. For coefficient fields of small cardinality we
require that the black box allows evaluations on points from an extension field
(Grigoriev et al. 1990), which can be realized in a computer program as the
so-called extended domain black box object (Dı́az and Kaltofen 1998). We
note that for efficiency it is sometimes useful to compute the coefficients of f
via interpolation before employing our methods.

Through randomization we can dramatically improve the efficiency of our al-

Giesbrecht et al. 2 JSC 36 (’03), 401–24



gorithms. Our randomization is of the Las Vegas kind—always correct and
probably fast—because one may always check a candidate sparsest shift via
a sparse interpolation algorithm. First, we may choose random values as in-
terpolation points rather than symbolic ones, and employ the probabilistic
analysis of DeMillo and Lipton (1978), Zippel (1979), and Schwartz (1980).
In the univariate case, and in the multivariate case where a very sparse shift
exists, we may replace the polynomial root finder by a GCD procedure. This
is possible since the sparsest shifts are the roots of a sequence of discrepan-
cies. For the sparsest shifts in the power bases, we can provide a complete
probabilistic analysis when the algorithm is run on two independent trials
or when all discrepancies up to 2 deg f are considered. For univariate shifts
within Q, we can further eliminate the indeterminate shift variable in our al-
gorithm by evaluating at random integers such that the shift is determined
through a large prime factor. We can provide proof for a method that uses 10
independent trials with the provision that the sparsest shift is unique.

The running times of our methods compare favorably with the previously
best algorithms (Grigoriev and Karpinski 1993; Grigoriev and Lakshman Y.
N. 1995; Lakshman Y. N. and Saunders 1996; Grigoriev and Lakshman 2000).
Not accounting for the length of the intermediately computed scalars, our
method at its best, in the univariate rational case when no symbolic value for
the shift is carried along, requires O(τ 2) operations and O(τ) evaluations of
f . When the bit-lengths of the rational numbers involved are considered, our
algorithm requires O(τ 2

M(τ 2 deg(f) log ‖f‖)) bit operations, where O(M(`))
bit operations are sufficient to multiply two integers with ` bits (and M(`) = `2

using the standard algorithm, and M(`) = ` log ` log log τ using asymptotically
fast arithmetic). The algorithm of Lakshman Y. N. and Saunders (1996) uses
O(τ 2 deg f+τ 5) arithmetic operations and 4τ+2 values of f and its derivatives.
We note that Grigoriev and Karpinski (1993) have established the problem to
be in polynomial-time. Over a general field (supporting root finding), our “one
projection” algorithm of Subsection 3.2 requires O(τ 2

M(τ deg f)) operations
in K. O(τ) evaluations of f at symbolic points, or O(τ deg f) evaluations at
points in K are also required.

We can also find the sparsest shifts of a set of polynomials by reformulating
the problem as finding multivariate sparsest shift within a designated set.
The efficiency of our algorithms can be further improved by constraining the
computations within the bounds, whenever available, for the optimal sparsity,
and by pruning the highest degree terms which remain unchanged in all shifts.

Giesbrecht et al. 3 JSC 36 (’03), 401–24



2 Sparse Interpolations and Sparsity in Shifted Bases

2.1 Sparse interpolations in any given power basis

Given a black box polynomial f(x1, . . . , xn) ∈ D[x1, . . . , xn] in the power basis
generated by x1, . . . , xn.

f(x1, . . . , xn) =
r∑

i=1

uix
di,1

1 · · · xdi,n
n , ui ∈ D \ {0}, (1)

under another power basis of wj = aj,0 +aj,1x1 + · · ·+aj,nxn (1 ≤ j ≤ n) with
aj,i ∈ D for 1 ≤ j ≤ n, f is represented as:

g(w1, . . . , wn) =
t∑

i=1

ciw
ei,1

1 · · ·wei,n
n , ci ∈ K \ {0}, (2)

where K is the quotient field of D. Here, t, ei,j , and ci are all dependent on the
definition of wj; the enumeration in i depends on the term order being used.
The representation in (1) is a special case of (2).

The sparsity of a polynomial depends on the choice of basis in the repre-
sentation; we consider the sparse interpolations in the power basis of wj for
1 ≤ j ≤ n.

The black box f takes values for each xj as input. In order to interpolate f in
wj, namely g(w1, . . . , wn) in (2), we need to form a black box for g that takes
inputs as values for wj such that f(x1, . . . , xn) = g(w1, . . . , wn). By definition,













w1

w2

...

wn




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







︸ ︷︷ ︸

W

=


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
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
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
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

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

︸ ︷︷ ︸

A
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x1

x2

...

xn













︸ ︷︷ ︸

X

(3)

and we have X = A−1(W −A0). We may assume the matrix A is non-singular
because both xj and wj are bases of K[x1, . . . , xn]. Let g(WTr) denote g(w1, . . . ,
wn). A black box for g can be constructed by evaluating f at (A−1(W −A0))

Tr:

g(WTr) = f((A−1(W − A0))
Tr), (4)

with both A−1 and A0 obtained from the given wj. By applying the Ben-
Or/Tiwari algorithm (Ben-Or and Tiwari 1988) and its early termination
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(Kaltofen et al. 2000; Kaltofen and Lee 2003) to the black box g(w1, . . . , wn)
in (4), we establish the corresponding sparse interpolations of f in wj.

2.2 The sparsity of polynomials in shifted bases

Consider a univariate polynomial f(x) ∈ D[x] in two different power bases: x
and (x + s) with s 6= 0. Let d = deg f(x), ui 6= 0 for 1 ≤ i ≤ r, and cj 6= 0 for
1 ≤ j ≤ t, then f can be represented as:

f(x) = u1x
d1 + u2x

d2 + · · · + urx
dr (5)

= c1(x + s)e1 + c2(x + s)e2 + · · · + ct(x + s)et , (6)

with d1 < d2 < · · · < dr = d and e1 < e2 < · · · < et = d. The number of terms
of f in the basis of x is r, and in the basis of (x + s) is t.

As a special case of multivariate sparsifying transformations, Grigoriev and
Lakshman (2000) gave an inequality between the sparsities in different shifted
bases. Using a different method, we give a stronger result in the univariate
case.

Theorem 1 For a univariate polynomial f with deg f = d, represented in
any two different bases with number of term r and t respectively, r+ t > d+1,
provided

(
d
j

)

6= 0 for all 0 < j < d when computed as an element in D.

PROOF. Since the indeterminate x in (5) can be used to represent a shifted
basis itself, by using the representations in (5) and (6) in our proof, we will
not lose generality.

If r = d + 1 in (5), since t ≥ 1 in (6), we have r + t > d + 1.

When r < d + 1, there are κ = d + 1 − r many terms of f in (5) with a
coefficient of zero. Let their degrees be ordered as δ1 > δ2 > · · · > δκ. We
expand (6) and collect the coefficient for each xδi , which are contributed from
all terms of degree no less than δi. In other words, collect all cj(x + s)ej with
ej ≥ δi and

(

et

δi

)

set−δict +

(

et−1

δi

)

set−1−δict−1 + · · · +
(

ej

δi

)

sej−δicj = 0.
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As a result, we have the following system for 1 ≤ i ≤ κ:





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

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
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(
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δ1

)

set−δ1 · · · 0 · · · 0
...

. . .
...

(
et

δi

)

set−δi · · ·
(

ej

δi

)

sej−δi · · · 0
(

et

δi+1

)

set−δi+1 · · ·
(
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δi+1

)

sej−δi+1 · · ·
...

. . .
...

. . .
(
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δκ

)

set−δκ · · ·
(
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)

sej−δκ · · ·
(
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)
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
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=
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...

0




















.

In the matrix V , we consider the i-th row Vi and its number of non-zero entries
vi. Note that the first vi entries in Vi are non-zero and vi ≤ vi+1. We want to
claim Vi is not a linear combination of V1, . . . , Vi−1 and vi ≥ i+1 for 1 < i < t.

We have v1 ≥ 2, otherwise
(

et

δ1

)

set−δ1ct = 0 implies ct = 0. If v1 = v2 = 2, the
non-zero part of V1 and V2 form a 2 × 2 transpose Vandermonde-like system
(cf. (Evans and Isaacs 1976)) of rank 2 with solution ct = ct−1 = 0, which is
a contradiction. When v1 ≥ 3, v2 ≥ v1 ≥ 3. Therefore, v2 ≥ 3, and vi ≥ i + 1
for i = 1, 2.

If v1 < v2, then obviously v2 is not linearly dependent on v1; if v1 = v2, then
v1 = v2 ≥ 3, and that V1 and V2 form a system with rank 2. In either case,
V1, V2 are linearly independent.

Suppose the claim is true for i = n and consider i = n+1. Then we have either
vn ≥ n+2 or vn = n+1. If vn ≥ n+2, then vn+1 ≥ n+2, V1, . . . , Vn, Vn+1 form
a step-wise transpose Vandermonde-like system with rank n + 1, and Vn+1 is
not a linear combination of V1, . . . , Vn. If vn = n + 1 and vn+1 > n + 1, Vn+1

is independent of V1, . . . , Vn.

If vn = vn+1 = n+1, V1, . . . , Vn+1 form an (n+1)×(n+1) step-wise transpose
Vandermonde-like system of rank n + 1, which implies a solution ct = ct−1 =
· · · = ct−n = 0, a contradiction.

Now consider when the matrix V is t by t, Vt is independent from V1, . . . , Vt−1

and V is non-singular with solution ct = ct−1 = · · · = c1 = 0, which is a
contradiction. Therefore, t > κ = d + 1 − r. 2

Consider a univariate polynomial f of degree d that is given in any power
basis in which there are exactly r non-zero terms. If r > (d+1)/2, Theorem 1
provides a lower bound for the optimal sparsity of f as d + 1 − r < τ ≤ r.
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In the case when r ≤ (d + 1)/2, this is the sufficient condition for the unique
sparsest shift (Lakshman Y. N. and Saunders 1996, Theorem 1), of which our
Theorem 1 gives a simple proof:

Lemma 2 For a univariate polynomial f(x) with deg f(x) = d, if there are
exactly τ non-zero terms in the power basis of (x+ θ) and τ ≤ (d+1)/2, then
θ is the unique sparsest shift of f(x), which is an element in the quotient field
of D (Lakshman Y. N. and Saunders 1996, Theorem 1). Again we assume that
(

d
j

)

6= 0 in D for all 0 < j < d.

PROOF. Suppose s 6= θ, and there are t non-zero terms of f in the s-shifted
basis, by Theorem 1, t > d + 1 − τ ≥ (d + 1)/2. Now suppose that θ is an
algebraic element over the quotient field of D. Then for a conjugate θ∗ of θ we
have f(x) =

∑

i ci(θ)(x + θ)ei =
∑

i ci(θ
∗)(x + θ∗)ei , because f(x) ∈ D[x]. 2

Consider a multivariate polynomial f(x1, . . . , xn) and a multivariate sparsest
shift θ = (θ1, . . . , θn). If there are m components θj of θ = (θ1, . . . , θn) so that
each θj happens to be the sparsest shift of f in variable xj, then each of those
m components θj can be computed as a univariate shift of f in xj, and the
overall n-variate problem be brought down to an (n − m)-variate problem.

In the case the multivariate sparsest shift of f is very sparse, considering
Lemma 2 on each variable in turn provides a sufficient condition for the
uniqueness of the multivariate sparsest shift (see Lemma 3). Based on the
fast algorithm for finding the unique sparsest rational shift in the univari-
ate case (see Subsection 3.3), with high probability we can quickly determine
whether such a shift exists, and obtain the shift if it does.

Lemma 3 Let δ = min1≤j≤n{degxj
f}. If f has exactly τ non-zero terms in

the θ-shifted basis and that τ ≤ (δ + 1)/2, then θ = (θ1, . . . , θn) is the unique
sparsest shift of f(x1, . . . , xn), and θj is the unique sparsest shift of f in xj

for 1 ≤ j ≤ n (Grigoriev and Lakshman 2000, cf. Lemma 2). Furthermore,
θ ∈ K

n, where K is the field generated by the coefficients of f (Lakshman Y.
N. and Saunders 1996, cf. Corollary 1).

3 Finding Sparsest Shifts

Based on the early termination sparse interpolation algorithms (Kaltofen et al.
2000; Kaltofen and Lee 2003), we present a class of algorithms for finding
sparsest shifts: the interpolation steps are sensitive to the sparsity of the target
polynomial in a given basis. We leave the shifts as variables in the procedure
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and solve the shift variables that minimize the interpolation steps. We will first
concentrate on the case of power bases. Later in Subsection 3.4 we consider
the Pochhammer and Chebyshev bases.

Section 2.1 showed how to form g(w1, . . . , wn) = f(x1, . . . , xn) for a given
polynomial f . All our algorithms can be employed for any given basis wj. We
shall focus on the standard power basis without losing generality.

Consider a polynomial f ∈ D[x1, . . . , xn] represented in the s-shifted basis
with s = (s1, . . . , sn) and K the algebraic closure of D:

f(x1, . . . , xn) =
t∑

i=1

ci(x1 + s1)
ei,1 · · · (xn + sn)ei,n , ci ∈ K.

Note that t, ci, and ei,j are all dependent on s. The problem of computing a
sparsest shift within S is to find s ∈ S such that t is minimized. Another notion
is that of a T -sparse shift (within S), which is a point s = (s1, . . . , sn) ∈ S
such that for the number of shifted terms we have t ≤ T . Algorithms for
computing all T -sparse shifts take T as an additional input.

We introduce n indeterminates z1, . . . , zn to serve as shift variables, and ma-
nipulate f(x1, . . . , xn) in the symbolic (z1, . . . , zn)-shifted basis yj = xj +zj for
1 ≤ j ≤ n. Then by applying (4), with W = [y1, . . . , yn]Tr, A0 = [z1, . . . , zn]Tr,
and A = In, we obtain f(y1 − z1, . . . , yn − zn). Now, consider the interpolation
of f in the basis of yj symbolically by the early termination Ben-Or/Tiwari
algorithm (Kaltofen et al. 2000; Kaltofen and Lee 2003): with αi = f(yi

1−z1,
. . . , yi

n−zn) the Berlekamp/Massey algorithm is carried out on a sequence of
polynomials {αi}i≥1, and the discrepancies abecome rational functions.

To avoid the GCD operations on the arising numerators and denominators of
such rational functions, we can implement the fraction-free Berlekamp/Massey
algorithm (Giesbrecht et al. 2002, Section 2) for computing the discrepancies
∆i. Therefore, {αi}i≥1 is a sequence of polynomials in K[z1, . . . , zn] [y1, . . . ,
yn], and the discrepancies ∆i are polynomials in y1, . . . , yn over K[z1, . . . , zn].
The following lemma is based on the early termination (Kaltofen et al. 2000;
Kaltofen and Lee 2003) of the Ben-Or/Tiwari algorithm.

Lemma 4 When a shift s = (s1, . . . , sn) ∈ K
n

is given, the discrepancies
∆i evaluated at (z1, . . . , zn) = (s1, . . . , sn) are non-zero polynomials in yi for
1 ≤ i ≤ 2t, and zero polynomials for all i ≥ 2t + 1, where t is the number of
terms of the target polynomial f in the s-shifted basis.

All our algorithms manipulate the discrepancies ∆i, and we present our algo-
rithms in three categories. The Symbolic Algorithms of Subsection 3.1 treat
∆i as polynomials in K[z1, . . . , zn][y1, . . . , yn] and work in deterministic poly-
nomial time for constant n over any field over which algebraic systems can

Giesbrecht et al. 8 JSC 36 (’03), 401–24



be solved. The Single Projection Algorithms in Subsection 3.2 evaluate each
yj at a value pj to increase efficiency. Finally, in Subsection 3.3, we present
the Double Projection Algorithm for polynomials f ∈ Q[x], wherein the ∆i

are evaluated at random y = p ∈ Z as well as random shifts z = s ∈ Z. This
yields a particularly efficient algorithm for rational polynomials.

3.1 Symbolic Algorithms

Our symbolic algorithms are all deterministic, they treat both the shifted
basis yi and the shift variables zi as indeterminates. Consider the fraction-
free Berlekamp/Massey algorithm processing the sequence {αi}i≥1 with αi =
f(yi

1 − z1, . . . , y
i
n − zn): the discrepancies ∆i are polynomials in y1, . . ., yn over

K[z1, . . ., zn]. Based on Lemma 4, we seek sparsest shifts for f within S by
solving for z ∈ S that minimize i such that ∆i=2t+1 is a zero polynomial in
K[y1, . . . , yn].

Algorithm: MultiSparsestShifts <symbolic>

Input: I f(x1, . . . , xn) ∈ D[x1, . . . , xn]: the input polynomial;
I S ⊂ K

n
: S 6= ∅, the shifts are constrained within S.

Output:I θ ∈ S: the sparsest shifts for f in S.

(1) [Compute ∆i.]

Perform the fraction-free Berlekamp/Massey algorithm on {αi}i≥1;

(2) [Solve for the first ∆i=2t+1 = 0, the zero polynomial in K[y1, . . . , yn].]

If i = 2t + 1, an odd integer, then

if there is (θ1, . . . , θn) ∈ S such that ∆i(θ1, . . . , θn, y1, . . . , yn) is
a zero polynomial in K[y1, . . . , yn], then

Break out of the loop;

Return all the solutions θ ∈ S for ∆i = 0 ∈ K[y1, . . . , yn].

The algorithm always terminates: for any s ∈ S 6= ∅, ∆2t+1 = 0 when t is
the number of terms of f in the s-shifted basis. In Step (2), a discrepancy
∆i =

∑κ
j=1 gi,j · yσj,1

1 · · · yσj,n
n becomes a zero polynomial in K[y1, . . . , yn] if the

system of polynomial equations

gi,1(z1, . . . , zn) = 0
...

gi,κ(z1, . . . , zn) = 0

has a solution in S, and the problem is thus reduced to solving an algebraic
system. We add that for multivariate polynomials, transcendental shifts are
possible, for instance x1 + x2 − 1 = (x1 + ϑ) + (x2 − ϑ − 1). In this case the
variety of shift points is of dimension higher than 0.
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For the problem of computing T -sparse shifts, we note that in Lemma 4, a
zero of ∆k stays a zero of ∆i for all i ≥ k, and the shifts that make ∆2T+1

a zero polynomial (in yj) are all s that make t ≤ T . We find T -sparse shifts
within S by solving all s ∈ S such that ∆2T+1(s1, . . ., sn, y1, . . ., yn) = 0.

When the polynomial f(x) is univariate, a number of special “tricks” can
be employed. Under the z-shifted basis y = x + z, the discrepancies ∆i are
polynomials in y with coefficients in K[z], and every ∆i is a product of its
primitive part ϕi(y) ∈ K[z][y] and content gi ∈ K[z]:

∆i = gi · ϕi(y). (7)

A sparsest shift θ ∈ S occurs at the first i such that ∆i becomes a zero
polynomial in y, that is, when gi = 0. If S = K, at the first time gi is a non-
trivial polynomial in K[z], there is a solution to gi = 0 and the solutions are
the sparsest shifts for f . Since all zeros of gi stay zeros of gi+1, we can just
look for the first non-trivial GCD of gi and gi+1 in K[z].

Algorithm: UniSparsestShifts <symbolic>

Input: I f(x) ∈ D[x]: a univariate polynomial;

Output:I θ ∈ K: the sparsest shifts for f in K.

(1) [Compute ∆i.]

Perform the fraction-free Berlekamp/Massey algorithm on {αi = f(yi −
z)}i≥1;

(2) [Compute gcd(gi−1, gi), the content of gcd(∆i−1, ∆i).]

If i = 2t + 2, an even integer, then

if gcd(gi−1, gi) is non-trivial in K[z], then

Break out of the loop;

Return all the solutions of gi−1(z) = 0 in K.

This algorithm requires a root finder in K[z]. Likewise, to find all T -sparse
shifts for a univariate polynomial, we solve gcd(g2T+1, g2T+2)=0.

We can easily determine the complexity of this algorithm in terms of opera-
tions in K (not including the cost of the root finding). We first observe that the
cost of running the Berlekamp/Massey algorithm in Step (1) dominates other
costs. Also, the degrees of the polynomials involved in the computation do not
get larger than O(τ 2d) in y and O(τd) in z (assuming the input f has degree
d). Thus, the total cost is O(τ 2

M(τ 3d2)) operations in K, where M(m) is the
cost of multiplying two univariate polynomials of degree m. M(m) = O(m2)
using standard polynomial arithmetic and M(m) = O(m log m log log m) using
asymptotically fast polynomial arithmetic. Theoretically there is an asymp-
totically faster alternative by replacing the Berlekamp/Massey algorithm with
the algorithm of Brent et al. (1980).
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3.2 Single Projection Algorithms

The efficiency of symbolic algorithms can be improved substantially by pro-
jecting variables yj to values pj. For simplicity, we describe projection algo-
rithms as finding sparsest shifts within certain algebraic extensions. However,
they can all be modified as being restricted to a non-empty subset S.

Now consider the discrepancy from the previous subsection, ∆2T+1(z1, . . .,
zn, y1, . . ., yn), evaluated at (y1, . . . , yn) = (p1, . . . , pn), where pj are distinct
values.

Algorithm: MultiSparseShiftsEquation <one proj>

Input: I f(x1, . . . , xn) ∈ D[x1, . . . , xn]: the input polynomial;
I T : a positive integer; T -sparse shifts for f are being considered.

Output:I ∆2T+1: a polynomial; T -sparse shifts of f have to satisfy ∆2T+1 = 0.

(1) [Choose the projection values.]

Pick distinct random values p1, . . . , pn;

(2) [Compute ∆2T+1.]

Carry out the fraction-free Berlekamp/Massey algorithm on {αi}1≤i≤2T+1

with αi = f(pi
1 − z1, . . . , pi

n − zn).

The output polynomial equation might contain roots that are not T -sparse
shifts of f , but if we restrict the shifts within a set S, the single constraint
∆2T+1 = 0 may be sufficient to locate all T -sparse shifts within S. Additional
equations can be generated by running the algorithm for different random pj’s.
Eventually all false solutions, the zeros that do not yield a T -sparse shift, will
be eliminated from a system of polynomial equations with enough distinct
pj’s.

Theorem 5 Consider a system of polynomial equations such that each equa-
tion ∆i,2T+1 = 0 is an output of algorithm MultiSparseShiftsEquation that
projects (y1, . . ., yn) to qi = (qi,1, . . . , qi,n). If there are enough equations
∆i,2T+1 = 0 with distinct qi, then all the solutions are T -sparse shifts of f .

PROOF. Consider the symbolic discrepancy: ∆2T+1 =
∑κ

j=1 gj · yσj,1

1 · · · yσj,n
n

=
∑κ

j=1 gj · yσj , with yσj = y
σj,1

1 · · · yσj,n
n and gj ∈ K[z1, . . . , zn]. The solutions

to g1 = · · · = gκ = 0 are T -sparse shifts of f . Now let q
σj

i = q
σj,1

i,1 · · · qσj,n

i,n , the
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projection of yσj at qi = (qi,1, . . . , qi,n), and consider the following system:













qσ1

1 qσ2

1 · · · qσκ

1

qσ1

2 qσ2

2 · · · qσκ

2

...
...

. . .
...

qσ1

κ qσ2

κ · · · qσκ
κ

























g1

g2

...

gκ













=













0

0
...

0













. (8)

Given enough distinct qi, we eventually obtain a non-singular system in (8),
which provides solutions to g1 = · · · = gκ = 0. These are only solutions to the
initial system of equations. 2

In the univariate case, with high probability all the false solutions can be
eliminated by projecting y to two different random values. Consider ∆i(y) =
gi ·ϕi(y) in (7) and distinct random values p, q. By the Schwartz-Zippel lemma
(Schwartz 1980), gcd(∆i(p), ∆i(q)) = gcd(gi · ϕi(p), gi · ϕi(q)) = gi with high
probability and our next algorithm follows.

Algorithm: UniSparsestShifts <one proj, two seq>

Input: I f(x) ∈ D[x]: a univariate polynomial.

Output:I θ: the sparsest shifts for f with high probability.

(1) [Choose the projection values p and q.]

Pick distinct random values p, q;

(2) [Compute ∆i(p) and ∆i(q).]

Perform the fraction-free Berlekamp/Massey algorithm on {αi = f(pi −
z)}i≥1 and {βi = f(qi − z)}i≥1;

(3) [Compute gcd(∆i(p), ∆i(q)).]

If i = 2t + 1, an odd integer, then

if gcd(∆i(p), ∆i(q)) = g(z) is non-trivial in K[z], then

Break out of the loop;

Return all the solutions of g(z) = 0 in K.

To further increase the probability of correctness, we can project y to more
distinct random values q1, . . . , qk and form a projection sequence for each of
them. Then we look for the first i = 2t+1 such that gcd(∆i(q1), . . . , ∆i(qk)) =
g is non-trivial in K[z].

Much as in the case of the UniSparsestShifts <symbolic> algorithm above,
we can determine the complexity of this algorithm in terms of operations in
K. Again, the cost of running the Berlekamp/Massey algorithm in Step (2)
dominates. The degrees of the polynomials involved in the computation do
not get larger than O(td), where d = deg f , and all polynomials are univariate
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in z after the projections in step (1). Thus, the total cost is O(τ 2
M(τd))

operations in K.

We can even reduce the projection to a single sequence by taking GCD’s of
subsequent elements in the sequence. Recall the primitive part of ∆i in (7),
we need to make sure there is no non-trivial GCD of ϕi(p), ϕi+1(p), . . . in K[z]
for all p.

Theorem 6 Suppose that the sparsest shift of f(x) in K has τ < deg(f) + 1

terms and assume that
(

deg(f)
j

)

6= 0 for all 0 < j < deg(f) when computed

as an element in D. Then for Γ = GCD2τ+1≤i≤2 deg(f)+1(∆i(z, y)) (over the
quotient field of D) we have Γ = g(z)γ(y) were g(z) ∈ D[z] and γ(y) ∈ D[y].

PROOF. As stated above, if Γ(θ, y) = 0 for some θ in the algebraic closure
of the quotient field of D, denoted by K, then f(y − θ) is τ -sparse in y. By
assumption, there exists such a shift, and therefore z−θ divides Γ. As in (7) we
factor Γ(z, y) = g(z)γ(z, y), where g ∈ D[z] and γ(z, y) ∈ D[z, y] whose content
in D[z] is 1. We claim that γ(z, y) ∈ D[y]. Let us suppose the contrary. Then
there exists an element σ in the algebraic closure of D(z) and transcendental
over K such that γ(z, σ) = 0. We thus have that ∆i(z, σ) = 0 for all 2τ + 1 ≤
i ≤ 2 deg(f)+1. Since the terms σi are all distinct, we then get from the Ben-
Or/Tiwari algorithm, using p = σ and re-interpreting the coefficient field of f
to be the algebraic closure of D(z), that f(y − z) is τ -sparse. Let d = deg(f)

and cd 6= 0 be the leading coefficient of f . However, the term cd

(
d
j

)

zd−j is

unique in the coefficient of yj of f(y − z), so f(y − z) has actually d + 1
non-zero terms over D[z]. 2

The algorithm using a single projected sequence is as follows:

Algorithm: UniSparsestShifts <one proj, one seq>

Input: I f(x) ∈ D[x]: a univariate polynomial;
I δ: an upper bound on deg f .

Output:I θ: the sparsest shifts for f in K with high probability.

(1) [Choose a projection values.]

Pick a random value p;

(2) [Compute ∆1, . . . , ∆2δ+1.]

Compute ∆1, . . . , ∆2δ+1 by the fraction-free Berlekamp/Massey algorithm
on {αi}1≤i≤2δ+1 with αi = f(pi − z);

(3) [Minimize t so that gcd(∆2t+1, . . . , ∆2δ+1) is non-trivial.]

For t = δ, δ − 1, δ − 2, . . . do

if gcd(∆2δ+1, . . . , ∆2t) becomes trivial in K[z], then

Break out of the loop;

Return all solutions of gcd(∆2t+1, . . . , ∆2δ) = 0 in K.
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We conjecture that instead of taking the GCD of all discrepancies up to
2 deg f + 1, we can only look for the GCD of a much smaller number of
discrepancies after the sparsest case ∆2τ+1 is reached.

3.3 Two Projections: Finding the sparsest shifts of a rational polynomial

When f ∈ Q[x], we can project the sequence {f(yi − z)}i≥1 both on a random
y and random z from Z, and use the multiplicative structure of the integers
to recover the sparsest shift. Thus, finding the sparsest shift will be reduced
to running the Berlekamp/Massey algorithm on a small number of integer
sequences. The existence of a large prime factor in the GCD’s of two discrep-
ancies will reveal the sparsest shift. This improves the efficiency. It also allows
us to work completely with a black-box representation for f , requiring only
the value of f at points in Z.

Finding factors of a black-box polynomials

We begin by demonstrating a general algorithm for finding a linear factor in
one variable of a black-box bivariate polynomial. This will be applied to the
discrepancy polynomials

Let Φ ∈ Q[z, y] be a black-box polynomial of degree C in y and degree d in z.
Suppose that

Φ(z, y) = (az − b)eΨ(z, y),

where a, b ∈ Z are relatively prime, e ≥ 1, and Ψ(z, y) ∈ Q[x, z] has no non-
trivial factor in Z[z]. In this section we give a Monte Carlo algorithm to find
a and b with a small constant number of evaluations of Φ.

A number m ∈ Q is said to be µ-smooth, for some µ > 1, if all prime factors
of both the numerator and denominator of m are less than µ. A polynomial
Ψ ∈ Z[z, y] is primitive if the GCD of all its coefficients is one. A polynomial
Φ ∈ Q[z, y] is µ-primitive if it is a µ-smooth number times a primitive, integer
polynomial. For any Ψ =

∑

ij Ψijy
izj ∈ Z[z, y], let ‖Ψ‖ = max |Ψij|. The

height of a rational number α/β ∈ Q (where gcd(α, β) = 1) is H(α/β) =
max{|α|, |β|}. Define the denominator denom(Φ) of Φ ∈ Q[z, y] as the LCM
of the denominators of its coefficients. The content of Φ is then defined as the
usual content of the integer polynomial denom(Φ)·Φ. The height of Φ ∈ Q[z, y]
is H(Φ) = max{|denom(Φ)|, ‖denom(Φ) · Φ‖}. Note that this is the height of
Φ in the standard, unshifted, power basis.

To begin with we will insist that Φ is µ-primitive, and treat the general case
separately below.
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Algorithm: FindLinFac

Input: I Black box for Φ ∈ Q[z, y];
I Bounds C ≥ degy Φ, D ≥ degz Φ, H > H(Φ);
I S > height of the sought linear factor;
I a smoothness bound µ;

Φ is assumed to be µ-primitive, and
µ ≥ max

{

17, S2, 11C
√

D(H + 2C + 2),

540CD2 log H log(C +D +log H)
}

;

Output:I A candidate factor az − b of Φ, where a, b ∈ Z are relatively prime;
or a report “No linear factor in z exists”;

(1) L = {0, . . . , µ2 − 1};
(2) Choose random γ1, γ2, σ ∈ L;

(3) Let q̄ = gcd(numer(Φ(σ, γ1)), numer(Φ(σ, γ2));

(4) Let q = q̄/m, with m the largest µ-smooth factor of q̄;

(5) If q = 1

(6) Then Return “No linear factor in z exists”;

(7) Else

(8) Find w and largest e ≥ 1 such that q = we

(9) If w < 2S2

(10) Then Return “Failure”;

(11) Else Return a, b ∈ Z such that
gcd(a, b) = 1, |a|, |b| ≤ S, and −b/a ≡ σ mod w;

Theorem 7 For any black-box Φ ∈ Z[z, y] meeting the input criteria,
FindLinFac works correctly as stated with probability at least 1/5 on any in-
vocation.

Comments

• While the algorithm is defined for µ-primitive polynomials in Z[z, y], the
reader is encouraged to think of these as simply primitive polynomials in
Z[z, y]. The µ-smooth content is the only rational (that is, non-integer)
part of the computation.

• The input S, the height of the desired linear factor, can be replaced with
‖Φ‖. However, if we have a priori knowledge of a smaller factor (as we do
later in this section), this input may be useful.

• The algorithm can be run repeatedly until a factor is found, or the user
is satisfied that with sufficiently high probability no linear factor exists.

• The probability of success is undoubtedly much higher than is proven
here.
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• If w is too small and the algorithm reports “Failure” in step (10), we get
a useful modular relation between a and b. Collecting these may allow us
to construct a, b without ever getting a really large w;

To prove Theorem 7, we require a number of lemmas. The first says that
if we project a primitive bivariate polynomial randomly along one coordinate
twice, then we expect to get two relatively prime univariate polynomials whose
contents do not share any large prime factors.

Lemma 8 Let Ψ ∈ Z[z, y] be primitive with degy Ψ ≤ C and degz Ψ ≤ D. Let

µ ≥ 11CD1/2(log ‖Ψ‖+2C +2). For γ1, γ2 chosen randomly from {0, . . . , µ2−
1}, the probability that gcd(Ψ(z, γ1), Ψ(z, γ2)) = 1, and that no prime ≥ µ
divides the contents of both Ψ(z, γ1) and Ψ(z, γ2), is at least 9/10.

PROOF. We first show that for randomly chosen γ1, γ2 ∈ {0, . . . , µ2 − 1},
the resultant r of Ψ(z, γ1), and Ψ(z, γ2) is non-zero with high probability.
This will imply Ψ(z, γ1) and Ψ(z, γ2) are relatively prime. Let y1, y2 be two
new indeterminates and consider the resultant R(y1, y2) ∈ Z[y1, y2] of Ψ(z, y1)
and Ψ(z, y2) as polynomials in Q(y1, y2)[z]. R has degree at most 2CD. For
randomly chosen γ1, γ2 ∈ {0, . . . , µ2 − 1}, R(γ1, γ2) 6= 0 with probability at
least 1 − 2CD/µ2 by the Schwartz-Zippel Lemma.

Now write Ψ(z, y) =
∑

0≤i≤D Ψi(y)zi. For any γ ∈ {0, . . . , µ2−1}, for all terms
Ψj, we have |Ψj(γ)| ≤ ‖Ψ‖ · µ2C+2. Assume that gcd(Ψ(z, γ1), Ψ(z, γ2)) = 1,
so in particular, Ψ(z, γ1) 6= 0. The content of Ψ(z, γ1) is at most ‖Ψ‖ · µ2C+2,
and this has at most logµ(‖Ψ‖ · µ2C+2) ≤ log ‖Ψ‖ + 2C + 2 prime factors
≥ µ. Since Ψ is primitive, for each prime p dividing the content of Ψ(z, γ1)
there exists an i such that Ψi(y) 6≡ (0) mod p. There are at most C integers
γ2 ∈ {0, . . . , p − 1} such that Ψi(γ2) ≡ 0 mod p. For any prime p ≥ µ, there
are at most Cµ integers γ2 ∈ {0, . . . , µ2 − 1} such that Ψi(γ2) ≡ 0 mod p. The
total number of γ ∈ {0, . . . , µ2−1} such that there exists a p ≥ µ dividing the
contents of both Ψ(z, γ1) and Ψ(z, γ2) is then at most C(log ‖Ψ‖+ 2C + 2)µ.

The probability that either gcd(Ψ(z, γ1), Ψ(z, γ2)) 6= 1 or there is a prime
p ≥ µ which divides both their contents, is at most 2CD/µ2 + C(log ‖Ψ‖ +
2C + 2)/µ < 1/10, by our choice of µ. 2

The next lemma simply says that the GCD of an evaluation of two relatively
prime integer polynomials is generally smooth.

Lemma 9 Let h1, h2 ∈ Z[y] be relatively prime, primitive polynomials of de-
gree d ≤ D and resultant r ∈ Z, where µ ≥ 10D log r. For a randomly chosen
σ ∈ {0, ..., µ2−1}, gcd(h1(σ), h2(σ)) is µ-smooth with probability at least 9/10.
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PROOF. Since h1, h2 are relatively prime, there exist u1, u2 ∈ Z[y] such that
u1(y)h1(y) + u2(y)h2(y) = r. Thus, if any prime divides h1(σ) and h2(σ), that
prime divides r as well. Suppose then that p is a prime dividing r. Then there
exists u

(p)
1 , u

(p)
2 , w(p) ∈ Z[y] such that w(p) is the GCD of h1, h2 modulo p, and

0 < deg w(p) < d, and

u
(p)
1 (y)h1(y) + u

(p)
2 (y)h2(y) = w(p)(y) + pQ(p)(y)

for some Q(p) ∈ Z[y]. If p divides h1(σ) and h2(σ), we have w(p)(σ) ≡ 0 mod p.
For any prime p, the number of σ ∈ {0, . . . , p−1} such that w(p)(σ) ≡ 0 mod p
is less than D. For primes p ≥ µ the number of σ ∈ {0, . . . , µ2 − 1} such that
w(p) ≡ 0 mod p is less than Dµ.

We know r has at most log r prime factors, so the probability that w(p)(σ) ≡
0 mod p for any prime p > µ is at most D log(r)/µ < 1/10 by our choice of
µ. 2

We look now at the probability that a number in an arithmetic progression
is rough, i.e., has a large prime factor. This theorem is an extension of an
exercise of (Knuth 1983). Let a, b ∈ Z be relatively prime. We say that an
integer x ∈ {0, . . . , µ2 − 1} is (µ; a, b)-rough if the largest prime factor of
ax + b is greater than µ.

Lemma 10 Let a, b ∈ Z be relatively prime and µ ≥ max{a2, b, 17}. The
number of (µ; a, b)-rough integers x with 0 ≤ x < µ2 is at least µ2/4.

PROOF. We assume a > 0. For a prime p > µ
√

a, there is a unique x0

such that 0 ≤ x0 < p and ax0 + b ≡ 0 mod p. Thus, the sequence of all x
(0 ≤ x < µ2) such that ax + b ≡ 0 mod p is x0, x0 + p, . . . , x0 + kp, where
x0 + kp < µ2 and x0 + (k + 1)p ≥ µ2. For any p there are at least µ2/p − 1
such numbers.

Any number can appear in the sequence for at most one prime. To see this,
assume that x appears in the sequences for distinct primes p and q, with
µ
√

a < p < q < µ2. Then pq | ax + b. Since q > µ
√

a + 2, pq > µ2a + 2µ
√

a.
But ax + b is at most aµ2 + b < aµ2 + µ < aµ2 + 2µ

√
a < pq.

Summing all primes p such that µ
√

a < p < µ2 (and using the fact that
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√
α ≤ µ1/4, we count

∑

µ
√

a<p<µ2

µ2

p
− 1 = µ2

∑

µ
√

a<p<µ2

1

p
−

∑

µ
√

a<p<µ2

1

≥ µ2

(

log log µ2 − log log µ
√

a − 1

2 log2(µ2)
− 1

2 log2(µ
√

a)

)

− π(µ2)

≥ µ2

(

log log µ2 − log log µ5/4 − 1/8

log2 µ
− 8/25

log2 µ

)

− π(µ2)

≥ µ2

(

log
8

5
− 89/200

log2 µ

)

− µ2

−1.5 + log µ2
,

which is ≥ µ2/4 for µ ≥ 33. Here π(m) is the number of primes less than or
equal to m, and Theorem 2 of (Rosser and Schoenfeld 1962), shows π(m) <
m/(−1.5 + log(m)) for m > 5. We also use Theorems 5 and 6 from (Rosser
and Schoenfeld 1962) which show that

log log m + B − 1

2 log2 m
<
∑

p≤m

1

p
< log log m + B +

1

2 log2 m

for m ≥ 286. We verify the theorem for all µ ≥ 17. 2

PROOF. [of Theorem 7] Start by considering a primitive polynomial Ψ ∈
Z[z, y] of degree c ≤ C in y and d ≤ D in z, that has no non-trivial factor in
z alone.

By Lemma 8, for randomly chosen γ1, γ2 ∈ L, with probability at least 9/10,
P1 := Ψ(z, γ1) and P2 := Ψ(z, γ2) are relatively prime, and their contents do
not share any prime factor ≥ µ. Assume this is indeed the case for our choice
of γ1, γ2.

It is easily derived that ‖Ψ(z, γi)‖ ≤ (102C2D(log ‖Ψ‖ + 2C + 2))C+1 · ‖Ψ‖.
Thus, the resultant r of Ψ(z, γ1) and Ψ(z, γ2) is at most (2D)2D · (102C2D ·
(log ‖Ψ‖ +2C + 2)2)2D(C+1) · ‖Ψ‖2D. Simplifying this, we find that log r ≤
54CD log ‖Ψ‖ · log(C + D + log H). By Lemma 9, for a randomly chosen
σ ∈ L, gcd(Ψ(σ, γ1), Ψ(σ, γ2)) is µ-smooth with probability at least 9/10.

Write P1(z) = c1 ·h1(z) and P2(z) = c2 ·h2(z), where c1, c2 ∈ Z are the contents
of P1, P2 respectively, and h1, h2 ∈ Z[z] are primitive. For a random σ ∈ L,
we compute G = gcd(Ψ(σ, γ1), Ψ(σ, γ2)) = gcd(c1, c2) · gcd(h1(σ), h2(σ)). By
Lemma 8, gcd(c1, c2) is µ-smooth. By Lemma 9, gcd(h1(σ), h2(σ)) is µ-smooth
with probability at least 9/10. Thus G is µ-smooth with probability at least
81/100.

Now consider the full case when Φ(z, y) = m · (az + b)e ·Ψ(z, y), where m ∈ Q

is µ-smooth, a, b ∈ Z are relatively prime, and Ψ is primitive and has no factor
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purely in Z[z]. Then q̄ = m · (aσ − b)e · gcd(Ψ(σ, γ1), Ψ(σ, γ2). From above we
see gcd(Ψ(σ, γ1), Ψ(σ, γ2)) is µ-smooth with probability at least 81/100. Thus
w is equal to the factor of aσ−b which is not µ-smooth. Both |a| and |b| are less
than S. By Lemma 10, (aσ + b) has a prime factor of size greater than µ with
probability at least 1/4, and in this case we recover a, b as described in step
(11). To conclude, for any input, on any invocation the algorithm succeeds
with probability at least (81/100) · (1/4) ≥ 1/5. 2

Approximating the denominator and content

To complete the general algorithm, we must identify the µ-primitive part of
a black-box polynomial. The following algorithm does this with 2 evaluations
of the black box.

Algorithm: DenomAndCont

Input: I Black box for f ∈ Q[y];
I D ≥ deg f , H ≥ height(f);
I a desired smoothness bound µ ≥ 4D(log H + 2D + 2);

Output:I a candidate ω ∈ Q such that content of ωf is µ-smooth;

(1) Let L = {0, . . . , µ2 − 1};
(2) Choose a random α0 ∈ L and compute ν0 = f(α0) ∈ Q;

If ν0 = 0 the goto (2);

(3) Choose random α1 ∈ L; compute ν1 = f(α1);

(4) Let δ̃ = (denom(ν0), denom(ν1));

(5) Let κ̃ = gcd(δ̃ν0, δ̃ν1);

(6) Return ω = δ̃/κ̃

Theorem 11 With probability at least 1/2 the output ω of DenomAndCont(f, µ)
is such that the content of ωf is µ-smooth.

PROOF. In Step (2) we simply find a small non-zero evaluation point for f .
We expect that at most 2 evaluations of f are required.

In Step (3) we approximate the denominator δ of f . Suppose f̄ = δf . For
any prime p | δ we know that f̄ 6≡ (0) mod p (since δ is relatively prime to the
content κ of f). For any prime p, the number of α1 ∈ {0, . . . , p− 1} for which
f̄(α1) ≡ 0 mod p is at most D. For p ≥ µ, the number of α1 ∈ {0, . . . , µ2 − 1}
such that f(α1) ≡ 0 mod p is at most Dµ. The number of prime divisors of δ
is less than log H. Thus, with probability at most D log H/µ we choose an α1

such that f̄(α1) ≡ 0 mod p for some p ≥ µ which divides δ. By our choice of
µ this probability is less than 1/4.
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In Step (5) we approximate the content κ of δf . Suppose that δ̃f has content
κ̃. We know κ̃ is κ times some µ-smooth number, and δ̃f = δ̃κ̃f0, where f0

is primitive. Clearly κ | ν1. For any prime p, the number of α1 ∈ L for which
f0(α1) ≡ 0 mod p is at most D. For any prime p ≥ µ, the number of α1 ∈
{0, . . . , µ21} such that f0(α1) ≡ 0 mod p is at most Dµ. Now numer(ν0) <
µ2D+2H, and has at most logµ((µ2D+2H) < log H + 2D + 2 prime factors
p ≥ µ. Thus, the probability that we choose an α1 such there is any prime
p ≥ µ dividing f0(α1) ≡ 0 mod p is at most D(log H + 2D + 2)/µ. By our
choice of µ this probability is less than 1/4.

Thus, the overall probability of success is at least 1/2 on any iteration. 2

Once we have the ω = DenomAndCont(f), it is easy to construct a black box
for the µ-primitive part by multiplying the result of an evaluation of f by ω.

Finding sparsest shifts of integer polynomials

Suppose we have a black box for a rational polynomial f ∈ Q[x], and a bound
D ≥ d = deg f . We now describe the complete algorithm for finding a sparsest
shift of f .

We first approximate the content to within a µ-smooth multiple using
DenomAndCont (µ will be specified later). We then build a new black box
for the µ-primitive part of f (by dividing out the content and denominator)
and so assume from now on that f is µ-primitive.

As discussed earlier, when we run the Berlekamp/Massey algorithm on the
sequence of polynomials {f(yi + z)}i≥1, we are really just constructing the
discrepancy polynomials ∆i(z, y) for i = 1, 2, . . . , t. When we choose a random
p and s and run Berlekamp/Massey on {f(pi + s)}i≥1 we are evaluating the
discrepancy polynomials at (s, p). That is, the Berlekamp/Massey algorithm
gives us a black box for the discrepancy polynomials. FindLinFac will be just
what we need to find the smallest t such that ∆2t−1(z, y) has a factor in z
alone (at least in the case when t ≤ (d + 1)/2).

We now examine the discrepancy polynomials more closely, and for 1 ≤ i ≤ t
let αi(z, y) = f(yi − z) and

Āi =













α1 α2 · · · αi

α2 α3 . .. αi+1

... . .. . ..
...

αi · · · · · · α2i−1













∈ Q[z, y]i×i, ∇i = det Āi
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The (2i− 1)st discrepancy of the the sequence {αi}i≥1 is ∆2i−1 = ∇i/∇i−1 for
i ≥ 1 (taking ∇0 = 1). The sparsest shift of f occurs when there exists an
s ∈ Q (or perhaps an algebraic extension of Q) such that ∆2t−1(y, s) = 0, i.e.,
when ∆2t−1 has a factor in z alone.

When t ≤ (d + 1)/2, the sparsest shift is rational and unique, so we can
apply the algorithm FindLinFac to the numerators in the Berlekamp/Massey
algorithm to find the sparsest shift.

Theorem 12 Given a black box for a µ-primitive polynomial f ∈ Q[x] of
degree d, which we assume has a t-sparse shift s ∈ Q, where t ≤ (d + 1)/2, we
can find s ∈ Q with an expected 10t evaluations of the black box.

PROOF. It is straightforward to show the bounds

‖∇i‖ ≤ ii · 2id(1 + d)i(1 + di)i · ‖f‖d,

|b| ≤ 2t · t2t · ‖f‖t,

|a| ≤ 2t · t2t · ‖f‖t · (2d)dt

Now use the algorithm FindLinFac on each discrepancy in turn. By Theorem
7, at the (2t+1)st discrepancy we will find a, b such that az−b divides ∆t(z, y)
with probability 1/5 on any invocation. The sparsest shift is then a/ − b. By
running the algorithm repeatedly, we expect to find t and s with 5t invocations
of FindLinFac, i.e., using 10t sequences. 2

The cost of the algorithm is again dominated by the Berlekamp/Massey al-
gorithm on the sequences f(γi

1 + σ) and f(γi
2 + σ) for i = 0, . . .. The rational

numbers involved do not have more than O(dτ 2 log ‖f‖) bits, where d = deg f .
Thus, the total cost is bounded by O(τ 2

M(dτ 2 log ‖f‖)) bit operations, where
now O(M(`)) bit operations are sufficient to multiply two integers with ` bits.
Again, as in the polynomial case, M(`) = `2 using the standard algorithm,
and M(`) = ` log ` log log τ using asymptotically fast arithmetic.

All the notes following Theorem 7 apply here. In fact we heuristically expect
that only one invocation of the algorithm will be needed to achieve success.

Once we find a sparsest shift, the polynomial can be recovered by completing
the Ben-Or/Tiwari algorithm steps with the evaluations and generator already
computed. Therefore, we regard this algorithm as an improved sparse inter-
polation algorithm: it discovers and interpolates with respect to a possible
sparsest basis during the interpolation procedure.

The “one projection, one sequence” algorithm for univariate polynomials of
Subsection 3.2 holds even more promise when a second “shift” projection is
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used. That is, we proceed as in FindLinFac, but instead of taking the GCD of
the discrepancies of two different sequences, we take the GCD’s of the (i−1)st
and i-th discrepancies. As noted in Subsection 3.2, we conjecture this reveals
the linear factor symbolically, and if this is indeed the case, we might hope
that only one randomly shifted integer sequence is needed.

Multivariate rational polynomials with very sparse shifts

In the case when a polynomial f ∈ Q[x1, . . . , xn] has a unique “very sparse”
shift, we can in fact reduce the problem of computing this sparse shift to the
univariate case. In particular, by a “very sparse” shift, we mean one such that
meets the criteria of Lemma 3: the minimal sparsity τ after this shift is at
most (δ + 1)/2, where δ = min1≤i≤n di and di = degxi

f for 1 ≤ i ≤ n.

In fact, we can make a stronger statement. Considering f as a polynomial
in Q(x1, . . . , xi−1, xi+1, . . . , xn)[xi], we define the sparsest shift of f in xi as
the θi ∈ Q such that when written in the power basis of (xi − θi), f has
the smallest number of non-zero coefficients (in Q[x1, . . . , xi−1, xi+1, . . . , xn]).
Define τi to be this minimal number of non-zero coefficients. Clearly τi ≤ τ
for all i (1 ≤ i ≤ n).

Theorem 13 Let f ∈ Q[x1, . . . , xn] have sparsest shift (θ1, . . . , θn) ∈ Qn. As
well, assume that for 1 ≤ i ≤ n, the sparsest shift of f in xi has sparsity
τi ≤ (di + 1)/2. For any i, 1 ≤ i ≤ n, let Li = {0, . . . , 2di − 1} and randomly
choose a1, . . . , ai−1, ai+1, . . . , an ∈ Li. The sparsest shift of f(a1, . . . , ai−1, xi,
ai+1, . . . , an) in xi equals θi ∈ Q with probability greater than 1/2. It is not
the sparsest shift only if degxi

f(a1, . . . , ai−1, xi, ai+1, . . . , an) < di.

PROOF. Write f as

f =
∑

0≤j≤di

f
(i)
j (x1, . . . , xi−1, xi+1, . . . , xn)xj

i .

The leading coefficient of f(a1, . . . , ai−1, xi, ai+1, . . . , an) is f
(i)
di

(a1, . . . , ai−1,
ai+1, . . . , an). This is non-zero with probability at least 1/2 by the Schwartz-
Zippel lemma. If this is indeed the case, f(a1, . . . , ai−1, xi, ai+1, . . . , an) has a
unique shift of sparsity less than (di + 1)/2. This shift must be θi. 2

We can use this theorem to solve for the sparsest shift of a multivariate f ∈
Q[x1, . . . , xn] whenever the conditions are met. Simply find the sparsest shift
in each variable in turn, using, for example, the two-projection algorithm
described in the previous section.
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3.4 Finding Sparsest Shifts in Non-Standard Bases

The algorithms for finding sparsest shifts in non-standard bases are derived
analogously to the early termination properties of sparse interpolation algo-
rithms (Kaltofen and Lee 2003).

Sparsest shifts in the Pochhammer basis

A univariate polynomial f(x) can be represented in the Pochhammer basis as

f(x) =
t∑

j=1

ujx
dj and uj 6= 0,

with xn = x(x+1) · · · (x+n− 1) for any integer n ≥ 0. A sparsest shift θ ∈ S
in the Pochhammer basis is an element in S such that t is minimized as τ in

f(x) =
τ∑

j=1

cj(x + θ)ej and cj 6= 0,

and a T -sparse shift s is such that t ≤ T .

Let f (k)(x) =
∑t

j=1 dk
j ujx

dj and ∆(f(x)) = f(x+1)− f(x). By the recurrence

f (k+1)(x) = x · ∆(f (k)(x)), f (k)(x) can be obtained directly from f(x), . . .,
f(x + 2k− 1). The early termination sparse interpolation in the Pochhammer
basis of x (Kaltofen and Lee 2003) is based on the following fact: the fraction-
free Berlekamp/Massey algorithm first encounters a zero discrepancy after
processing exactly 2t + 1 elements from the sequence {f (k)(x)}k≥0 (note that

k starts from 0 here). The Pochhammer exponents of f(x) =
∑t

j=1 ujx
dj are

the roots of the minimal generating polynomial Λ(ζ), namely, Λ(ζ) =
∏t

j=1(ζ−
dj) = λtζ

t + λt−1ζ
t−1 + · · · + λ0.

To find the sparsest shifts, we introduce the shift variable z and consider
y = x + z. The recurrence for f (k)(x) in the Pochhammer basis of y becomes
f (k+1)(y − z) = y ·∆(f (k)(y − z)) with ∆(f(y − z)) = f(y + 1− z)− f(y − z).
We carry out the fraction-free Berlekamp/Massey algorithm on the sequence
{f (k)(y − z)}k≥0: the discrepancies ∆k are polynomials in y whose coefficients
are polynomials in z. The solutions for z such that ∆k first becomes the zero
polynomial in y are the sparsest shifts θ. These occur at k = 2τ , where τ is
the number of terms in f in a sparsest shifted Pochhammer basis. Similarly,
the T -sparse shifts are solutions for z in ∆2T = 0.

The special “tricks” discussed earlier for the univariate power bases can be
implemented correspondingly. Yet, when applying the projection algorithms
(see Subsections 3.2 and 3.3), we need to assure y = x + z is projected to
a positive value. Moreover, consider a Pochhammer term projected to two
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different values p and q: cj ·p·(p+1) · · · (p+ej−1) and cj ·q·(q+1) · · · (q+ej−1).
Due to the factorial nature, if |p−q| < deg f , our projection algorithms might
falsely include some of 1, . . . , ej − 1 as shifts.

Sparsest shifts in the Chebyshev basis

Let Ti(x) denote the i-th Chebyshev polynomial of the first kind: T0(x) = 1,
T1(x) = x, and Ti(x) = 2xTi−1(x) − Ti−2(x) for i ≥ 2. A polynomial f(x) can
be represented in the Chebyshev basis:

f(x) =
t∑

j=1

ujTdj
(x) and uj 6= 0.

A sparsest shift θ ∈ S is an element in S such that t is minimized to τ in

f(x) =
τ∑

j=1

cjTej
(x + θ) and cj 6= 0.

The early termination sparse interpolation in the Chebyshev basis of x (Kalt-
ofen and Lee 2003) introduces a symbolic pc and interpolates f̃ = f +pc which
has exactly t̃ non-zero terms (f is recovered by removing pc from f̃ at the end).
If α̃k(x) = f̃(Tk(x)), the matrix

Ãk(x) =













2α̃0 2α̃1 . . . 2α̃k−1

2α̃1 α̃2 + α̃0 . . . α̃k + α̃k−2

...
...

. . .
...

2α̃k−1 α̃k + α̃k−2 . . . α̃2k−2 + α̃0













(9)

is non-singular for 1 ≤ k ≤ t̃, and singular for k ≥ t̃ + 1.

To find the sparsest shifts, we introduce the shift variable z and y = x + z.
Unlike interpolation, we consider f̄(y−z) = f(y−z)+pcTdt

(y) with pc 6= −ut

such that f and f̄ have exactly the same Chebyshev terms in y. Note that
dt = eτ = deg f = deg f̄ , ut = cτ , and that f can be recovered by removing the
added term whenever it is necessary. When ᾱi = f̄(Ti(y)− z) and the (i, j)-th
entry of Āk(y, z) is ᾱi+j−2+ᾱ|i−j|, the introduction of pcTdt

(y) provides Āk(y, z)
being non-singular before k reaches the sparsity of f̄ in the Chebyshev basis
of y. That is, 1 ≤ k ≤ t̃ (Kaltofen and Lee 2003, cf. Theorem 11).

The sparsest shifts are the solutions for z such that the Āk(y, z) first becomes
singular, that is, the first k such that det Āk(y, z) is the zero polynomial in y.
The singularities can also be detected at a zero discrepancy in the modified
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Gohberg/Koltracht algorithm (Kaltofen and Lee 2003), so we can also choose
to solve z such that the discrepancy first becomes the zero polynomial in y.

Finding the T -sparse shifts can be formulated similarly. However, one needs
to take into consideration that the non-singularities of all principal leading
submatrices are assumed in the modified Gohberg/Koltracht algorithm.

Treating pc as a value, our additional “tricks” for the univariate power bases
can be applied accordingly. Also, y = x + z has to be projected to a value
larger than one when applying the projection algorithms.

4 Extensions and Improvements

4.1 Prune the highest degree terms

In addition to imposing a lower bound or an upper bound, when available,
to the sparsities (see Section 2.2), we can also reduce the computations by
pruning the highest degree terms.

Consider a univariate polynomial f(x) in any two power bases:

f(x) = u1x
d1 + u2x

d2 + · · · + utx
dt

= c1(x + s)e1 + c2(x + s)e2 + · · · + cτ (x + s)eτ ,

with ui 6= 0 for 1 ≤ i ≤ t, cj 6= 0 for 1 ≤ j ≤ τ , and d1 < d2 < · · · <
dt = deg f , e1 < e2 < · · · < eτ = deg f . The highest degree term remains
unchanged, that is, its degree and coefficient are fixed in all shifted bases:
ut = cτ , dt = eτ = deg f .

In fact, for a multivariate polynomial f(x1, . . . , xn) =
∑t

i=1 uix
di,1

1 · · · xdi,n
n , its

highest degree terms in every direction will stay fixed in all shifted power
bases; they are the terms with exponents (di,1, . . . , di,n) such that for every
j 6= i there is a νk > 0, 1 ≤ k ≤ n, in (ν1, . . . , νn) = (di,1 − dj,1, . . . , di,n − dj,n).

For a given polynomial, if some or all highest degree terms are known, e.g.,
if the polynomial is known to be monic, let

∑κ
i=1 ci(y1 − z1)

ei,1 · · · (yn − zn)ei,n

sum up those terms. Now instead of f(y1 − z1, . . . , yn − zn), we proceed in our
algorithms with

f̄ = f(y1 − z1, . . . , yn − zn) −
κ∑

i=1

ci(y1 − z1)
ei,1 · · · (yn − zn)ei,n , (10)

which has κ fewer terms than f in every shifted basis. Our algorithms for
finding the sparsest shifts are all sensitive to the optimal sparsity. That is,
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instead of using the (2τ + 1)-st discrepancy ∆2τ+1, the sparsest shifts can be
recovered from the (2τ − 2κ + 1)-st discrepancy ∆2(τ−κ)+1.

The “non-trivial GCD” trick in the univariate case can be further exploited:
suppose the highest degree term in f , cτx

eτ , is known. We can proceed with
our algorithm with f(y − z) and f̄ = f(y − z) − cτ (y − z)eτ to update their
discrepancies ∆i and ∆̄j accordingly. Since f̄ has one term less than f , the
sparsest shifts for f are the solutions to ∆2τ+1 = ∆̄2τ−1 = 0, which can be com-
puted through finding the first gcd(∆2i+1, ∆̄2i−1) that is non-trivial in z. Note
that in the multivariate case, we have a system of polynomial equations and
each equation is a zero discrepancy corresponding to the polynomial pruned
with a subset of its highest degree terms.

For the problem of finding T -sparse shifts, we can proceed with f̄ in (10)
and consider ∆2(T−κ)+1 = 0 similarly. We note that the highest term pruning
techniques can be applied to the Pochhammer and Chebyshev bases as well.

4.2 Finding sparsest shifts for a set of polynomials

Multivariate shifts within a designated set enable us to compute sparsest shifts
that simultaneously minimize the terms of a given set of polynomials.

Consider a set of m polynomials fk(x1, . . . , xn) ∈ D[x1, . . . , xn] for 1 ≤ k ≤ m.
An s = (s1, . . . , sn)-shifted power basis represents fk, 1 ≤ k ≤ m, as

fk(x1, . . . , xn) =
tk∑

j=1

ck,j(x1 + s1)
ek,1,j · · · (xn + sn)ek,n,j =

tk∑

j=1

ck,jβ
ek,j

k,j (11)

with ck,i 6= 0.

There are a number of different ways to measure the sparsity of a set of
polynomials.

Minimize the sum of the number of shifted terms

We look for all shifts s ∈ S such that t1 + · · · + tk in (11) is minimized.
Introduce m − 1 indeterminates and construct a polynomial F :

F (x1, . . . , xn, µ1, . . . , µm−1) = µ1f1 + µ2f2 + · · · + µm−1fm−1 + fm. (12)

Consider the shifts for F within S̄ = (s1, . . . , sn, 0, . . . , 0) with (s1, . . . , sn) ∈ S.
The shifts θ = (θ1, . . . , θn) that minimize t1+· · ·+tn can be obtained by finding
the sparsest shifts θ̄ = (θ1, . . . , θn, 0, . . . , 0) for F within S̄.
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Although there are m − 1 variables introduced, the shifts in those variables
are fixed as 0. As a result, when using random projections for removal of
variables in the discrepancies, all µk can be evaluated to scalars. An alternative
is to use a single indeterminate µ0 and find the sparsest shifts within S̄0 =
(s1, . . . , sn, 0), where (s1, . . . , sn) ∈ S, for the polynomial G:

G(x1, . . . , xn, µ0) = µ0f1 + µ2
0f2 + · · · + µm−1

0 fm−1 + fm. (13)

We note that randomly projecting µ0 may lead to larger scalars than before.

Minimize the number of distinct shifted terms

Here we want to minimize the number of distinct βk,i in (11) to represent every
fk, 1 ≤ k ≤ m.

The polynomial F in (12) is now a polynomial in x1, . . . , xn over a coefficient
domain D[µ1, . . . , µm−1]. Supposing k 6= l, we assume k < l ≤ m and consider
ck,iβ

ek,i

k,i from fk and cl,jβ
el,j

l,j from fl. If β
ek,i

k,i = β
el,j

l,j , then their corresponding
terms in F (x1, . . . , xn) collide into one term with coefficient either µkck,i+µlcl,j

(when l < m) or µkck,i + cl,i (when l = m), which cannot be a zero polynomial
in µk. The sparsest shifts for F ∈ D[µ1, . . . , µm−1][x1, . . . , xm] in the power
basis of x1, . . . , xn thus minimize the number of distinct βk,i in representing
f1, . . . , fm. Similarly, we can work with a single indeterminate and compute
the sparsest shifts for G in (13) in the power basis of x1, . . . , xn over D[µ0].

This method can be extended to a set of polynomial in the Pochhammer and
Chebyshev bases.

Minimize the maximum of the number of shifted terms

Here we look for all shifts s in (11) such that max(t1, · · · , tm) is minimized.

When performing the fraction-free Berlekamp/Massey algorithm on {fk(x
i
1 −

s1, . . . , x
i
n−sn)}i≥0 for a polynomial fk, the discrepancies ∆k,i become zero for

all i ≥ 2tk + 1. Now update ∆k,i for each i in parallel until a solution θ = (θ1,
. . . , θn) to the system ∆1,i(θ) = · · · = ∆m,i(θ) = 0 is found.

This method simply performs the shift-finding algorithm for each polynomial
in parallel, and can be applied to a set of polynomials in the Pochhammer and
Chebyshev bases.
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