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Matrix determinant definition
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where y; j are from an arbitrary commutative ring,
and S, is the set of all permutationson {1,2,....n}.

Interesting rings: Z, K|[xa, ..., %], K[X]/(x")



Fast matrix multiplication

Strassen’s [1969] O(n>5t) matrix multiplication algorithm

m1 — (ap2—ag2)(bp1—Db22)
— (ag1+a22)(br1+bo2)
— (ag1—ag1)(b11+Db12)
m4 — (ar1+a12)bp2) lag b1+ a1 201 =M+ mpy—Mmu+me
M «— ag1(D12—bo2) |a11b12+ a3 2020 =My+ Mg
M «— ap2(bp1—D11) |A21b114+ 822021 = M+ My
My «— (ag1+822)P11) 821012+ a2 2020 =My — Mg+ M5 — Ny

Problems reducible to matrix multiplication:

linear system solving, determinants [Bunch and Hopcroft 1974],...

Coppersmith and Winograd [1990]: O(n>%)



Life after Strassen: bit complexity

Linear system solvingx = A ‘bwhere Ac Z™"and b c Z":

With Strassen and Chinese remaindering [McClellan 1973]:

Step 1: For prime numbers p4,..., px Do
Solve Axl = b (mod p;) where Xl € Z/(p;)

Step 2: Chinese remainder x, ... x¥ to Ax=b (mod p;--- py)

Step 3: Recover denominators of x; by continued fractions of

P Py

Length of integers: k = (n max{log||Al|, log ||b||} )+

Bit complexity:  n**® max{log ||Al|, log ||| }} o



With Hensel lifting [Moenck and Carter 1979, Dixon 1982]:

Stepl: For ]} =0,1,... . kandaprime pDo |
Compute %l = x0 px[l] NS pJX[J] = Xx (mod pj+1)

. b=Axl-1  Ppli-U_ axli-1
l.a. bl = - =
p/ P

AN .

1.b. X' = A=l (mod p) reusing A=t mod p
—[k]
Step 2: Recover denominators of x; by continued fractions of — pk

With classical matrix arithmetic:
Bit complexity of 1.a: (nmax{log||A||, |b||})* Y +n?(log ||A]|)* oW

Total bit complexity: (n® max{log||A||, log |b||} )+



Bit complexity of the determinant

With Chinese remaindering: (nlog ||AJ|)*°Y times matrix multi-
plication complexity.

Sign of the determinant [Clarkson 92]: n*™° if matrix is ill-
conditioned.

Using denominators of linear system solutions [Pan 88, Abbott &
Bronstein & Mulders 99]:. fast when large first invariant factor.

Using fast Smith form method n>>°Y (log ||Al|)1>+°Y [Eberly &
Giesbrecht & Villard 2000]



Baby steps/giant steps algorithm [Kaltofen 1992/2000]

Wiedemann preconditions A and chooses random u and v; then

geooe

Detail of sequence a; = u’ A'v computation

Letr = [v/2n] and s= [2n/r].
Stepl. For j=1,2,....,r—1 Dol — Aly;
Step 2. Z «— A';
[O(n®) operations; integer length (\/n log ||A||)*o)]
Step 3. Fork—1.2.....sDo ul' — Tz
[O(n?°) operations; integer length (n log ||A[|)*o]

Step4. For | =0,1,...,r—1Do |
Fork=0,1,...,5D0 ay; « (u* v,



The state-of-the-art [Kaltofen & Villard ASCM 2001]

Theorem 1

The determinant of an integer matrix can be computed in
O(n>®%(log ||Al|)*°Y) bit operations.

[Storjohann 2002: O(n>38(log ||A||)* o) ]

Theorem 2

The determinant and adjoint of a matrix over a commutative ring
can be computed with O(n%°*®) ring additions, subtractions and
multiplications.

Problem 1 (from my 3ECM 2000 talk)

|mprove the bit complexity of algorithms for the deter minant,
resultant, linear system solution, Toeplitz systems, over the inte-
gers.



Early termination strategies
Early termination in Newton interpolation [Kaltofen 1986]
Fori<—1.2,...Do
Pick distinct p; and from f (p;) compute
() Cot-Ca(X—P) -+ + (X = Pa) - (x— 1)

= f(x) (mod (X—p1)---(X— Pi+1))
If fll(a) = f(a) for arandom a stop.

End For

Threshold n: In order to obtain a better probability, we require
flil(a;) = f(a;) for several random a;.



Alternative strategy [Emiris 1998, Kaltofen & Lee & Lobo 2000]
Fori<1,2,...Do

Pick random p; and from f (p;) compute

f[l](x) — Co—i—Cl(X— pl) N —|—Ci(X— pl) e (X— pl)
= f(x) (mod (X—p1)--- (X—Pit1))
If fll(x) = fI-Y(x), i.e, ¢ = 0 stop.

End For

Threshold ¢: In order to obtain a better probability, we require
Ci=Ciy1 = -=0Cz_1=0.



Complications for Chinese Remaindering

Negative values
On-the-fly conversion formula

Prime number distribution [Rosser & Schoenfeld 62]

Cot+Cipr+---+Cs1P1---Ps-1=M (mod ps--- Pm)
where c5_; # 0, |Ci| < pi+1, Sign(c;) = sign(M).

The probability of false early termination is for
random p; = O(m’logm) no less than 1 — O(1/mty=1-1),

FFT-based algorithm [Heindel & Horowitz 71]
Quadruple the number of moduli and perform Lagrangian in-
terpolation. Compare answer with p;--- pp,_¢.



Adaptive baby steps/giant steps algorithm [Kaltofen 2002]

Detail of sequence ai[” — (u"TA'vmod p;),1 <1 < mcomputation
Letr =1, Z=A

While early termination has not occurred

r —2r; s— [2n/r]; m«r?log |Al]; |
Stepl. For j=1,2,....r—1 Do vl — Alvmod p:

Step 2. Z « Z% now Z = A';
[O(n®) operations; integer length (r - log ||A||)*°]

Step 3. Fork=1,2,....sDo u*!" « uTZ" mod p;;
[O(n?-n/r) operations; #moduli: r?-log ||Al[]

Step4. For | =0,1,...,r—1Do |
Fork=0.1,....sDo aL'r]H — (U VY mod py.



Theorem [Kaltofen 2002]

Input: Ae Z™" b=Ilog||Al, threshold {. Output: detA

Method: baby steps/giant steps [ KV 2001] with early
termination (Monte Carlo)

Bit complexity: (1/b(b+{+log|detAl)-n3)trol

— Example det(A) = O(n*%h),Z = 0O(1): (n3"Y/Z-a/2]g)1+o(1)

— [Emiris 1998] (n4-%p)+ol: 34+1/2 —a/2<4-a<=a<1

— [Eberly et al. 2000] (n®+%/2-a/2pr1/2) 1o



Theoretical Improvements

— by use of Strassen-like fast matrix multiplication (on matrices
of dimension n%4> x n®4

— by blocking a la Kaltofen & Villard 2001 (communicated by
V. Pan, Jan 25, 2002)

The curse of soft-O

log,n < nY/3Y5forn>ng: ng> 102,
log,n < nY/>~Y7forn>ng: ng > 10%.

(log,n)? < nt2 for n>ng: ng > 216 = 65536.



Which algorithm to use when computing an integer determinant?

— Clarkson’s when matrix has small orthogonal defect

— Baby steps/giant steps with early termination when determinant
IS small

— Eberly & Giesbrecht & Villard when invariant factors are wanted

— Pan/ Abbott & Bronstein & Mulders when large invariant factor

— Storjohann’s high order lifting (???)

Unfortunately, only careful implementation of all of these
methods can answer this question.



