Efficient Problem Reductions In
Linear Algebra

Erich Kaltofen
North Carolina State University
www.kaltofen.net




A simple example

1 T —A ABT

o
B| =10 1 —B| eF™
I 00 I

—> MATMULTgithm.(N) = O(MATINV githm.(N) ).

A
I
0

|
0
0

Further examples:

LUDEcCOMP(n) = O(MATMULT(n)) [Bunch and Hopcroft 1974]
MATMULT(n) = O(DET(n)) [Baur and Strassen 1983]
CHARPOLY (n) = MATMULT(n)**°W [Keller-Gehrig 1985]
FROBFORM (n) = MATMULT(n)*+°() [Giesbrecht 1992]



Model: algebraic RAM over F = Q(+/2)

3 |vV2-1
Infinite input medium Infinite Infinite
! addr. memory data memory
1. READADDR 2 —1 5 1 4
Fived 2: READ %2 213 2 ?
length 3: CONSTADDR 1,2 31? 3 vV2-1
orogram 4. ADDADDR 1,2 4 7 4 ?
(“algo- > CONST x1, /2 50?2 —5(2+2
rithm”) 6: DIV 5,%2 6 ? 6 ?
7: PRINT 1
8: HALT
l
2++/2| EOT

Infinite output medium




— computes a function from D — E where D is infinite
—can be programmed as a C++ template function
— defines arithmetic time and space complexities

Ambiguity through randomization: RANDOM{ADDR} i, |
The operand | points to an address which is the cardinality
of SC F from which random elements are sampled.

— Monte Carlo: “always fast, probably correct”. Examples: isprime
Lemma [ DeMillo& Lipton’ 78, Schwartz/Zippel’ 79]
Let f,ge F|xq,..., %, f #9,SCF.

Probability(f(as,...,an) #9(ag,...,an) | & € S
> 1 —max{deg(f),deg(g)}/cardinality(S)

sparse polynomial interpolation, factorization, minimal polyno-
mial of a sparse matrix



Do we exactly know what the algorithm computes? E.g., in the
presence of floating point arithmetic?

— Las Vegas: “always correct, probably fast”.
Examples: polynomial factorization in Z,|x|, where p > 2.
Determinant of a sparse matrix



Theorem [Strassen ’73; Baur and Strassen ’83; see Giesbrecht ’92]
Suppose you have a Monte Carlo randomized algorithm on a al-
gebraic random access machine that can compute the deter minant
of an n x n matrixin D(n) arithmetic operations.

Then you have a Monte Carlo randomized algorithm on a random
access machine that can multiply two n x n matricesin O(D(n))
arithmetic operations.

No proof is known for Las Vegas or deterministic algorithms.



Proof requires

— Eliminate superfluous tests on algebraic elements by random
evaluation [DeMillo&Lipton *78/Schwartz/Zippel *79]

— MATINV<DET: reverse mode of automatic differentiation and

) —1)*1 adet(A)
B 83]: (A 1) — | '
[Baur&Strassen "83]: (A )i = “GerA) oa

—C(C+1)<XMATINV: C(C+I)=(C*—(C+1)"1)"tandentries
in C(C+ 1) are algebraically independent [Strassen *73]

— Eliminate divisions from straight-line program for C(C+1)
[Strassen/Ungar *73]

0 B+B?

— MATMuULT<Zdivision-free-C(C+1): [8 g] ' [(I) | ﬁB] - [O A+AB]



Black box linear algebra

The black box model of a matrix

y e [F" A-yelF"

A € ™" singular
[F an arbitrary, e.g., finite field

Perform linear algebra operations, e.g., A ‘b [Wiedemann 86]
with

O(n ) black box calls and
n?(logn)®™*)  arithmetic operations in IF and
O(n) intermediate storage for field elements



LINSOLVEQ: Given black box A € ™" compute w # 0 such
that Aw = 0.

Used In sieve-based integer factoring algorithms,

Las Vegas singularity and Monte-Carlo non-singularity tests.

NONSINGULAR<LINSOLVEOQ: For Ax=bsolve loﬁngl w=20
e
1
and compute X = s
Wht1 Wi,

Harder (?) problem
LINSOLVEL: Given black box A € F"*" (possibly singular) and b,
compute x such that Ax = b.



Results from Kaltofen & Saunders 1991

Random sampling in the nullspace is equivalent to LINSOLVEL].:

RANDOM-LINSOLVEO<LINSOLVE1

select a random vector y and solve Ax = b for b = Ay using
LINSOLVEL. Returnw=x—y.

Note that y is known to LINSOLVEL only up to a shift by any
nullspace vector.

LINSOLVE1<RANDOM-LINSOLVEO
Solve |A|b]w= 0 by random-LINSOLVEQ.
With probability 1 — 1 /|[F| we have w1 # 0:
consider a basis w= ST, cwl! and w;, # 0.
For any choice of c,,...,c. only one c; yields w1 = 0.



Results from Kaltofen & Saunders 1991 continued

LINSOLVEL1<LINSOLVEO+RANK
For r = rank(A) use a preconditioner

Al AlL2)

1 2
Aed A2| = Bl . A.B2

such that the r x r top-left submatrix A" is non-singular.

Note: B! can be sparse, Toeplitz, or “butterfly” matrices [Chen
et al. 2002]; we have a black box algorithm for Al"l.

Solve the r x r non-singular system

~ ~

o n
ANZ™ = bl where BYb= | | and return x = B o |-



When IS PROBLEM1<PROBLEM2?

— Both PROBLEM?Z2 and the black box matrix act as oracles.
E.g., PROBLEM?Z is solved for a preconditioned black box ma-
trix.

— The algorithm for PROBLEM?2 could be for a fixed or a generic
coefficient field. E.g., PROBLEM?Z2 is solved over a field exten-
sion.

—O(1) versus (logn)°™*) deceleration.
E.g., PROBLEMZ is called logn times or on matrices of bigger
dimensions.
The black box matrix is called O(n) times.
Note: LINSOLVE1<PRECONDNIL+Wiedemann/Lanczos



LINSOLVE1I<LINSOLVEOQ

— n
Can assume b = e,,1: consider [Oﬁ” b] X] H

11 |1
S ~ N~ =
A X b

Why/&:AT—ECT = [A:’l—le) ‘ ‘ IAT*J]_I_]__Cn_‘_lB], -
cj random, AW = 0 does not yield x = 1/(c"w) - w for all A:

Suppose A= [0 0| A, 3| ...] and the algorithm for LINSOLVEOQ
first checks if two columns are dependent. Then for any choice of
c; we always get c'w = 0.

Must hide b better: A= AB—bc” or A= (A—bc")B



The curse of soft-O

log,n < n'/3~Y>forn>ng: ng > 10%.
log,n < n/>~Y7"forn>ng: ng > 10%.

(log,n)? < nt2 forn>ny: ny > 2% = 65536.



Reductions and bit complexity

By CRA, MATMULT has bit complexity < n®(log HABH)“O(l),
where w Is the exponent of the arithmetic complexity.

DET: < n*®(log||A])**°1) [Eberly, Giesbrecht, Villard 2000]
< n*%(log||Al])}+°Y) [Kaltofen 1995/2000]
< ?O(log [|Al])*+°Y) [Kaltofen, Villard 2001]
< %38 (log ||Al|)*+°L) [Storjohann 2002]

The argonautical quest: How do preserve bit complexity when
computing high degree objects?



