
Efficient Problem Reductions in
Linear Algebra

Erich Kaltofen
North Carolina State University

www.kaltofen.net

A simple example




I A 0
0 I B
0 0 I



−1

=




I −A AB
0 I −B
0 0 I


 ∈ F3n×3n

=⇒ MATMULTarithm.(n) = O(MATINVarithm.(n)).

Further examples:
LUDECOMP(n) = O(MATMULT(n)) [Bunch and Hopcroft 1974]
MATMULT(n) = O(DET(n)) [Baur and Strassen 1983]
CHARPOLY(n) = MATMULT(n)1+o(1) [Keller-Gehrig 1985]
FROBFORM(n) = MATMULT(n)1+o(1) [Giesbrecht 1992]

Model: algebraic RAM over F = Q(
√

2)

3
√

2−1
Infinite input medium Infinite Infinite

↓ addr. memory data memory

Fixed
length
program
(“algo-
rithm”)

1: READADDR 2
2: READ ∗2
3: CONSTADDR 1, 2
4: ADDADDR 1, 2
5: CONST ∗1,

√
2

6: DIV 5,∗2
7: PRINT ∗1
8: HALT

→1
2
3
4
5
6

5
3
?
?
?
?

1
2
3
4

→5
6

?
?√

2−1
?

2+
√

2
?

↓
2+

√
2 EOT

Infinite output medium

– computes a function from D −→ E where D is infinite

– can be programmed as a C++ template function

– defines arithmetic time and space complexities

Ambiguity through randomization: RANDOM{ADDR} i, j
The operand j points to an address which is the cardinality
of S ⊂ F from which random elements are sampled.

– Monte Carlo: “always fast, probably correct”. Examples: isprime

Lemma [DeMillo&Lipton’78, Schwartz/Zippel’79]
Let f ,g ∈ F[x1, . . . ,xn], f 6= g,S ⊆ F.

Probability(f (a1, . . . ,an) 6= g(a1, . . . ,an) | ai ∈ S)

≥ 1−max{deg(f),deg(g)}/cardinality(S)

sparse polynomial interpolation, factorization, minimal polyno-
mial of a sparse matrix

Do we exactly know what the algorithm computes? E.g., in the
presence of floating point arithmetic?

– Las Vegas: “always correct, probably fast”.
Examples: polynomial factorization in Zp[x], where p � 2.

Determinant of a sparse matrix

Theorem [Strassen ’73; Baur and Strassen ’83; see Giesbrecht ’92]
Suppose you have a Monte Carlo randomized algorithm on a al-
gebraic random access machine that can compute the determinant
of an n×n matrix in D(n) arithmetic operations.

Then you have a Monte Carlo randomized algorithm on a random
access machine that can multiply two n× n matrices in O(D(n))
arithmetic operations.

No proof is known for Las Vegas or deterministic algorithms.

Proof requires

– Eliminate superfluous tests on algebraic elements by random
evaluation [DeMillo&Lipton ’78/Schwartz/Zippel ’79]

– MATINV≤DET: reverse mode of automatic differentiation and

[Baur&Strassen ’83]: (A−1)i, j =
(−1)i+ j

det(A)
· ∂det(A)

∂a j,i

– C(C+I)≤MATINV: C(C+I) = (C−1−(C+I)−1)−1 and entries
in C(C + I) are algebraically independent [Strassen ’73]

– Eliminate divisions from straight-line program for C(C + I)
[Strassen/Ungar ’73]

– MATMULT≤division-free-C(C+I):

[
0 A
0 B

]
·
[

I A
0 I +B

]
=

[
0 A+AB
0 B+B2

]

Black box linear algebra

The black box model of a matrix

y ∈ Fn

−−−−−−→
A · y ∈ Fn

−−−−−−−−→

A ∈ Fn×n singular
F an arbitrary, e.g., finite field

Perform linear algebra operations, e.g., A−1b [Wiedemann 86]
with

O(n) black box calls and
n2(logn)O(1) arithmetic operations in F and

O(n) intermediate storage for field elements

LINSOLVE0: Given black box A ∈ Fn×n, compute w 6= 0 such
that Aw = 0.
Used in sieve-based integer factoring algorithms,
Las Vegas singularity and Monte-Carlo non-singularity tests.

NONSINGULAR≤LINSOLVE0: For Ax = b solve

[
A b

01×n 0

]
w = 0

and compute x =
1

wn+1




w1
...

wn


 .

Harder (?) problem
LINSOLVE1: Given black box A ∈ Fn×n (possibly singular) and b,
compute x such that Ax = b.

Results from Kaltofen & Saunders 1991

Random sampling in the nullspace is equivalent to LINSOLVE1:

RANDOM-LINSOLVE0≤LINSOLVE1
select a random vector y and solve Ax = b for b = Ay using
LINSOLVE1. Return w = x− y.
Note that y is known to LINSOLVE1 only up to a shift by any
nullspace vector.

LINSOLVE1≤RANDOM-LINSOLVE0
Solve

[
A | b

]
w = 0 by random-LINSOLVE0.

With probability 1−1/|F| we have wn+1 6= 0 :
consider a basis w = ∑r

i=1 ciw[i] and w[1]
n+1 6= 0.

For any choice of c2, . . . ,cr only one c1 yields wn+1 = 0.

Results from Kaltofen & Saunders 1991 continued

LINSOLVE1≤LINSOLVE0+RANK

For r = rank(A) use a preconditioner
[

Ã[r] Ã[1,2]

Ã[2,1] Ã[2,2]

]
= B[1] ·A ·B[2]

such that the r× r top-left submatrix Ã[r] is non-singular.

Note: B[i] can be sparse, Toeplitz, or “butterfly” matrices [Chen
et al. 2002]; we have a black box algorithm for Ã[r].

Solve the r× r non-singular system

Ã[r]z[r] = b̃[r] where B[1]b =

[
b̃[r]

...

]
and return x = B[2]

[
z[r]

0

]
.

When is PROBLEM1≤PROBLEM2?

– Both PROBLEM2 and the black box matrix act as oracles.
E.g., PROBLEM2 is solved for a preconditioned black box ma-
trix.

– The algorithm for PROBLEM2 could be for a fixed or a generic
coefficient field. E.g., PROBLEM2 is solved over a field exten-
sion.

– O(1) versus (logn)O(1) deceleration.
E.g., PROBLEM2 is called logn times or on matrices of bigger

dimensions.
The black box matrix is called O(n) times.
Note: LINSOLVE1≤PRECONDNIL+Wiedemann/Lanczos

LINSOLVE1≤LINSOLVE0

Can assume b = en+1 : consider

[
A −b

01×n 1

]

︸ ︷︷ ︸
Ā

[
x
1

]

︸︷︷︸
x

=

[
0n

1

]

︸︷︷︸
b

Why Ã = Ā−bcT = [Ā∗,1− c1b | . . . | Ā∗,n+1− cn+1b],

c j random, Ã w̃ = 0 does not yield x = 1/(cT w̃) · w̃ for all Ā :

Suppose Ā = [0 | 0 | Ā∗,3 | . . .] and the algorithm for LINSOLVE0
first checks if two columns are dependent. Then for any choice of
c j we always get cT w̃ = 0.

Must hide b better: Ã = ĀB−bcT or Ã = (Ā−bcT)B

The curse of soft-O

log2 n < n1/3−1/5 for n ≥ n0 : n0 ≥ 1012.

log2 n < n1/5−1/7 for n ≥ n0 : n0 ≥ 1037.

(log2 n)2 < n1/2 for n ≥ n0 : n0 ≥ 216 = 65536.

Reductions and bit complexity

By CRA, MATMULT has bit complexity ≤ nω(log‖AB‖)1+o(1),
where ω is the exponent of the arithmetic complexity.

DET: ≤ n3.19(log‖A‖)1+o(1) [Eberly, Giesbrecht, Villard 2000]
≤ n3.03(log‖A‖)1+o(1) [Kaltofen 1995/2000]
≤ n2.70(log‖A‖)1+o(1) [Kaltofen, Villard 2001]
≤ n2.38(log‖A‖)1+o(1) [Storjohann 2002]

The argonautical quest: How do preserve bit complexity when
computing high degree objects?

