Efficient Problem Reductions in Linear Algebra

Erich Kaltofen
North Carolina State University
www.kaltofen.net

A simple example

$$
\begin{aligned}
{\left[\begin{array}{ccc}
I & A & 0 \\
0 & I & B \\
0 & 0 & I
\end{array}\right]^{-1} } & =\left[\begin{array}{ccc}
I & -A & A B \\
0 & I & -B \\
0 & 0 & I
\end{array}\right] \in \mathbb{F}^{3 n \times 3 n} \\
& \Longrightarrow \operatorname{MATMULT}_{\text {arithm. }}(n)=O\left(\operatorname{MATINV}_{\text {arithm. }}(n)\right)
\end{aligned}
$$

Further examples:
$\operatorname{LUDEcomp}(n)=O(\operatorname{MatMult}(n))$ [Bunch and Hopcroft 1974]
$\operatorname{MatMult}(n)=O(\operatorname{Det}(n))$ [Baur and Strassen 1983]
$\operatorname{CharPoly}(n)=\operatorname{MatMult}(n)^{1+o(1)}$ [Keller-Gehrig 1985]
$\operatorname{FrobForm}(n)=\operatorname{MatMult}(n)^{1+o(1)}$ [Giesbrecht 1992]

Model: algebraic RAM over $\mathbb{F}=\mathbb{Q}(\sqrt{2})$

- computes a function from $D \longrightarrow E$ where D is infinite
- can be programmed as a $\mathrm{C}++$ template function
- defines arithmetic time and space complexities

Ambiguity through randomization: RANDOM\{ADDR\} i, j
The operand j points to an address which is the cardinality of $S \subset \mathbb{F}$ from which random elements are sampled.

- Monte Carlo: "always fast, probably correct". Examples: isprime

Lemma [DeMillo\&Lipton'78, Schwartz/Zippel'79]
Let $f, g \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right], f \neq g, S \subseteq \mathbb{F}$.
$\operatorname{Probability}\left(f\left(a_{1}, \ldots, a_{n}\right) \neq g\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in S\right)$
$\geq 1-\max \{\operatorname{deg}(f), \operatorname{deg}(g)\} / \operatorname{cardinality}(S)$
sparse polynomial interpolation, factorization, minimal polynomial of a sparse matrix

Do we exactly know what the algorithm computes? E.g., in the presence of floating point arithmetic?

- Las Vegas: "always correct, probably fast".

Examples: polynomial factorization in $\mathbb{Z}_{p}[x]$, where $p \gg 2$.
Determinant of a sparse matrix

Theorem [Strassen '73; Baur and Strassen '83; see Giesbrecht '92] Suppose you have a Monte Carlo randomized algorithm on a algebraic random access machine that can compute the determinant of an $n \times n$ matrix in $D(n)$ arithmetic operations.

Then you have a Monte Carlo randomized algorithm on a random access machine that can multiply two $n \times n$ matrices in $O(D(n))$ arithmetic operations.

No proof is known for Las Vegas or deterministic algorithms.

Proof requires

- Eliminate superfluous tests on algebraic elements by random evaluation [DeMillo\&Lipton '78/Schwartz/Zippel '79]
- MATINV \leq DET: reverse mode of automatic differentiation and [Baur\&Strassen '83]: $\left(A^{-1}\right)_{i, j}=\frac{(-1)^{i+j}}{\operatorname{det}(A)} \cdot \frac{\partial \operatorname{det}(A)}{\partial a_{j, i}}$
$-C(C+I) \leq$ MatInv: $C(C+I)=\left(C^{-1}-(C+I)^{-1}\right)^{-1}$ and entries in $C(C+I)$ are algebraically independent [Strassen '73]
- Eliminate divisions from straight-line program for $C(C+I)$ [Strassen/Ungar '73]
- MATMULT \leq division-free- $C(C+I):\left[\begin{array}{ll}0 & A \\ 0 & B\end{array}\right] \cdot\left[\begin{array}{cc}I & A \\ 0 & I+B\end{array}\right]=\left[\begin{array}{ll}0 & A+A B \\ 0 & B+B^{2}\end{array}\right]$

Black box linear algebra
The black box model of a matrix

$A \in \mathbb{F}^{n \times n}$ singular
\mathbb{F} an arbitrary, e.g., finite field

Perform linear algebra operations, e.g., $A^{-1} b$ [Wiedemann 86] with
$O(n)$ black box calls and
$n^{2}(\log n)^{O(1)}$ arithmetic operations in \mathbb{F} and
$O(n)$ intermediate storage for field elements

LinSolve0: Given black box $A \in \mathbb{F}^{n \times n}$, compute $w \neq 0$ such that $A w=0$.
Used in sieve-based integer factoring algorithms,
Las Vegas singularity and Monte-Carlo non-singularity tests.

NONSINGULAR $\leq \operatorname{LINSOLVE0:~For~} A x=b$ solve $\left[\begin{array}{c|c}A & b \\ \hline 0^{1 \times n} & 0\end{array}\right] w=0$ and compute $x=\frac{1}{w_{n+1}}\left[\begin{array}{c}w_{1} \\ \vdots \\ w_{n}\end{array}\right]$.

Harder (?) problem
LinSolve 1: Given black box $A \in \mathbb{F}^{n \times n}$ (possibly singular) and b, compute x such that $A x=b$.

Results from Kaltofen \& Saunders 1991

Random sampling in the nullspace is equivalent to LinSolve1:

RANDOM-LINSOLVE $0 \leq$ LINSOLVE 1 select a random vector y and solve $A x=b$ for $b=A y$ using LinSolve1. Return $w=x-y$.
Note that y is known to LINSOLVE1 only up to a shift by any nullspace vector.

LINSOLVE $1 \leq$ RANDOM-LINSOLVE0
Solve $[A \mid b] w=0$ by random-LinSolve0. With probability $1-1 /|\mathbb{F}|$ we have $w_{n+1} \neq 0$:
consider a basis $w=\sum_{i=1}^{r} c_{i} w^{[i]}$ and $w_{n+1}^{[1]} \neq 0$.
For any choice of c_{2}, \ldots, c_{r} only one c_{1} yields $w_{n+1}=0$.

Results from Kaltofen \& Saunders 1991 continued

LinSolve $1 \leq$ LinSoLVE0+RANK

For $r=\operatorname{rank}(A)$ use a preconditioner

$$
\left[\begin{array}{cc}
\widetilde{A}^{[r]} & \widetilde{A}^{[1,2]} \\
\widetilde{A}^{[2,1]} & \widetilde{A}^{[2,2]}
\end{array}\right]=B^{[1]} \cdot A \cdot B^{[2]}
$$

such that the $r \times r$ top-left submatrix $\widetilde{A^{[r]}}$ is non-singular.

Note: $B^{[i]}$ can be sparse, Toeplitz, or "butterfly" matrices [Chen et al. 2002]; we have a black box algorithm for $\widetilde{A}^{[r]}$.

Solve the $r \times r$ non-singular system
$\widetilde{A}^{[r]} z^{[r]}=\widetilde{b}^{[r]}$ where $B^{[1]} b=\left[\begin{array}{c}{\left[b^{[r]}\right.} \\ \vdots\end{array}\right]$ and return $x=B^{[2]}\left[\begin{array}{c}z^{[r]} \\ 0\end{array}\right]$.

When is Problem $1 \leq$ Problem 2 ?

- Both Problem2 and the black box matrix act as oracles.
E.g., Problem2 is solved for a preconditioned black box matrix.
- The algorithm for Problem2 could be for a fixed or a generic coefficient field. E.g., Problem2 is solved over a field extension.
$-O(1)$ versus $(\log n)^{O(1)}$ deceleration.
E.g., Problem2 is called $\log n$ times or on matrices of bigger dimensions.
The black box matrix is called $O(n)$ times.
Note: LinSoLVE1 \leq PreCondNiL+Wiedemann/Lanczos

LinSolve $1 \leq$ LinSoLVE0

Can assume $b=e_{n+1}$: consider $\underbrace{\left[\begin{array}{c|c}A & -b \\ 0^{1 \times n} & 1\end{array}\right]}_{\bar{A}} \underbrace{\left[\begin{array}{c}x \\ 1\end{array}\right]}_{\bar{x}}=\underbrace{\left[\begin{array}{c}0^{n} \\ 1\end{array}\right]}_{\bar{b}}$

Why $\widetilde{A}=\bar{A}-\bar{b} c^{T}=\left[\bar{A}_{*, 1}-c_{1} \bar{b}|\ldots| \bar{A}_{*, n+1}-c_{n+1} \bar{b}\right]$,
c_{j} random, $\widetilde{A} \widetilde{w}=0$ does not yield $\bar{x}=1 /\left(c^{T} \widetilde{w}\right) \cdot \widetilde{w}$ for all \bar{A} :
Suppose $\bar{A}=\left[0|0| \bar{A}_{*, 3} \mid \ldots\right]$ and the algorithm for LinSolve0 first checks if two columns are dependent. Then for any choice of c_{j} we always get $c^{T} \widetilde{w}=0$.

Must hide \bar{b} better: $\widetilde{A}=\bar{A} B-\bar{b} c^{T}$ or $\widetilde{A}=\left(\bar{A}-\bar{b} c^{T}\right) B$

The curse of soft-O
$\log _{2} n<n^{1 / 3-1 / 5}$ for $n \geq n_{0}: n_{0} \geq 10^{12}$.
$\log _{2} n<n^{1 / 5-1 / 7}$ for $n \geq n_{0}: n_{0} \geq 10^{37}$.
$\left(\log _{2} n\right)^{2}<n^{1 / 2}$ for $n \geq n_{0}: n_{0} \geq 2^{16}=65536$.

Reductions and bit complexity
By CRA, MATMULT has bit complexity $\leq n^{\omega}(\log \|A B\|)^{1+o(1)}$, where ω is the exponent of the arithmetic complexity.

DET: $\leq n^{3.19}(\log \|A\|)^{1+o(1)}$ [Eberly, Giesbrecht, Villard 2000] $\leq n^{3.03}(\log \|A\|)^{1+o(1)} \quad$ [Kaltofen 1995/2000] $\leq n^{2.70}(\log \|A\|)^{1+o(1)} \quad$ [Kaltofen, Villard 2001] $\leq n^{2.38}(\log \|A\|)^{1+o(1)} \quad[$ Storjohann 2002]

The argonautical quest: How do preserve bit complexity when computing high degree objects?

