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Abstract

Computation of the sign of the determinant of a matrix and the determinant itself
is a challenge for both numerical and exact methods. We survey the complexity of
existing methods to solve these problems when the input is an n×n matrix A with
integer entries. We study the bit-complexities of the algorithms asymptotically in n
and the norm of A. Existing approaches rely on numerical approximate computa-
tions, on exact computations, or on both types of arithmetic in combination.
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1 Introduction

Computing the sign or the value of the determinant of an n × n matrix A is
a classical problem. Numerical methods are usually focused on computing the
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sign via an accurate approximation of the determinant. Among the applica-
tions are important problems of computational geometry that can be reduced
to the determinant question; the reader may refer to [11,12,9,10,46,44] and to
the bibliography therein. In symbolic computation, the problem of comput-
ing the exact value of the determinant is addressed for instance in relation
to matrix normal forms problems [42,29,24,51] or in computational number
theory [17].

In this paper we survey the known major results for computing the deter-
minant and its sign and give the corresponding references. Our discussion
focuses on theoretical computational complexity aspects. For an input matrix
A ∈ Zn×n with the infinity matrix norm ‖A‖, we estimate the worst case
bit-complexity in terms of n and ‖A‖. If ai,j denotes the integer in row i and
column j of A, A = (ai,j)1≤i,j≤n, then ‖A‖ = max1≤i≤n

∑n
j=1 |ai,j| and any

entry in A has bit-length bounded by

min
1≤i,j≤n

{β : |ai,j| < 2β, β ≥ 1} ≤ 1 + log (‖A‖ + 1) .

In algebraic complexity—i.e. when counting the number of operations in an
abstract domain—we refer to Strassen [52] and Bunch & Hopcroft [13] for the
reduction of the problem of computing the determinant to matrix multipli-
cation. Conversely, Strassen [53] and Bunch & Hopcroft [13] reduce matrix
multiplication to matrix inversion, and Baur & Strassen reduce matrix inver-
sion to computing the determinant [7]. See also link with matrix powering
and the complexity class GapL following Toda, Vinay, Damm and Valiant as
explained in [3], for example. Valiant’s theorem shows that the determinant is
universal for formulas [54].

For integer matrices, computing the sign of the determinant is at least not
harder than computing its value. We try to identify the differences between
these two problems even if it is not known whether the two complexities are
asymptotically different in the worst case. Numerical methods must deal with
condition numbers that influence the precision of the computations. Symbolic
methods are confronted with intermediate coefficient growth and invariant
structure of the matrix that directly influence the costs. We show some tech-
niques for devising algorithms sensitive to these conditions, and we state either
the worst case bit-complexities bounds or bounds depending on some addi-
tional properties. This implies discussion on algorithms adapted to certain
favorable situations, i.e., on classes of input matrices that require much lower
running time than for the worst case inputs.

The known upper estimates for the bit-complexity of the sign or the deter-
minant is progressively decreasing. In particular, for the determinant the bit-
complexity is known to be below the algebraic complexity times the maximum
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bit-size of the output (see [34,25,37] and section 6). This motivates us to focus
on the sequential time complexity rather on other aspects such as memory
resources, parallel time or practical considerations. We discuss deterministic
and randomized algorithms. The usage of random bits leads to Monte Carlo
algorithms where the answer is with controllably high probability correct but
not certified (known to be correct); and to Las Vegas algorithms where the
answer is always correct and produced quickly with high probability.

The paper is organized as follows. Section 2 recalls classical approximate and
exact results about the determinant. Section 3 discusses the sign computation
using numerical methods based on floating point numbers. The complexity, be-
cause of the precision required for intermediate values, is quite directly driven
by the condition number. A typical problem is to have algorithms sensitive
to this quantity. Symbolic algorithms on integers frequently rely on Chinese
remaindering. In section 4 exact computation approach with randomization
enables complexity estimates sensitive to the size of the determinant. The
same approach may also be reduced to constant precision computations for
determining the sign. In sections 5 and 6 we focus on other exact methods.
Existing fast algorithms fall into two categories. The first category takes ad-
vantage of linear system solving, a problem whose worst case bit-complexity is
currently lower than the complexity of the determinant. The second category
relies on Krylov-Lanczos-Wiedemann approaches combined with “baby-steps,
giant-steps” strategy to control the integer size growth and hence the cost. In
particular, section 5 deals with the Smith normal form which somehow cur-
rently “expresses” the difference between binary system solution and determi-
nant. Section 6 is concerned with improved worst case bounds and presents
the known asymptotically fastest algorithms. In section 7 we briefly consider
computations for matrices with sparse high precision numbers under a distinct
model of computation. The last section is our conclusion with some discussion
of previous results.

We assume that multiplying two arbitrary n× n matrices over a ring R costs
O(nω) operations in R. Using standard multiplication gives ω = 3 while
asymptotically fast matrix multiplication allows ω = 2.376 [20] and special
exponents if the input matrices are rectangular [19,33]. The bit-complexity of
multiplying a pair of l-bit integers or floating point numbers is O(l2) using
the straightforward algorithm or O∼(l) with a fast algorithm [48]. Here and
in the following with use the soft “O” notation, that is, for any exponent
e1, O∼(ne1) denotes O(ne1(log n)e2) for some constant exponent e2. Unless
specified otherwise we use the classical cubic complexity algorithm for ma-
trix multiplication and the essentially linear FFT-based one for the numbers.
Our model of computation is a random access machine under the logarithmic
cost criterion [2, Section 1.3]. The algorithms discussed here can be also im-
plemented on a multi-tape Turing machine, perhaps with a poly-logarithmic
slow-down. The worst case bit-cost for computing the sign of the determi-
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nant of an n × n matrix A with infinity norm ‖A‖ is denoted by Sn,‖A‖, the
worst case bit-cost for computing the determinant is Dn,‖A‖. Hence we have
Sn,‖A‖ ≤ Dn,‖A‖. For adaptive algorithms (see definition 2) these functions are
bounded also in terms of some quantities other than n and ‖A‖, e.g., the size
of the determinant, the condition number, the orthogonal defect or the num-
ber of invariant factors, in which case we write the matrix as an argument,
namely Sn,‖A‖(A),Dn,‖A‖(A).

2 Classical results on sign and determinant computation

In constant precision computation, the condition number of the determinant
plays a central role. Following Higham [32, Problem 13.15], we define this
number as follows:

log conddetA = log max
i,j

|ai,j(A
−1)i,j| ≤ log (∆(A)‖A‖) (1)

where

∆(A) =

∏n
i=1 ‖ ai,∗ ‖2

| det A| (2)

denotes the orthogonality defect of A. Thus the logarithm of the condition
number may be as large as O∼(n log ‖A‖). For error estimation we can use the
numerical rule of thumb [32, p. 10]:

forward error <∼ condition number × backward error

and may also take logarithm on both sides. The consequence is the well-known
fact that if one uses a constant precision arithmetic, the output precision for
the determinant satisfies:

precision <∼ log conddetA + log(backward error).

For accurate computations (with a low relative error for certifying the sign)
on badly conditioned matrices (having small determinants compared to ‖A‖
for instance) this implies that it is potentially necessary to compute with
O∼(n log ‖A‖)-bit numbers. We assume that the logarithm of the backward
error—say for computing the determinant from a LU or a QR decomposition—
is in O(logα n + log ‖A‖) for some α [32, Chapter 9]. With a matrix decom-
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position using O(n3) arithmetic operations, the bit-cost for the sign is thus
bounded by

Sn,‖A‖ = O∼(n3 · n log ‖A‖) = O∼(n4 log ‖A‖). (3)

This theoretical formula may be of weak interest numerically. As soon as
a family of matrices with a small condition number and an algorithm en-
suring a small backward error are considered, the asymptotic bit-cost is in
O∼(n3 log ‖A‖).

In symbolic computation, most of the difficulties in reducing the bit-complexity
are due to the impact of the size of the determinant. We know by Hadamard’s
inequality [30, Theorem 16.6] that

log | det A| ≤ (n/2) log n + n log ‖A‖,

therefore, representing the determinant may require up to O∼(n log ‖A‖) bits.
A detailed analysis of the average accuracy of Hadamard’s bound can be found
in [1]. Once a bound is found, the determinant can be computed by Gaussian
elimination with the sizes of intermediate integers controlled by exact division
or by Bareiss’s more sophisticated method [6]. Another approach [26,14] is
to use matrix arithmetic modulo primes and Chinese remaindering (on this
technique see [2, Theorem 8.9] or [8, Problem 4.2]). The cost for the exact
computation of the determinant, based on the fast reduction of the matrix
entries modulo several primes, is [30, Chapter 5]:

Dn,‖A‖ = O∼(n3 · n log ‖A‖) = O∼(n4 log ‖A‖). (4)

If fast matrix multiplication is available these estimates can be decreased.
Fast multiplication can be plugged into block algorithms, we refer to Demmel
and Higham [22] or Higham [32, Chapter 22] for numerical approaches. For
algebraic and symbolic aspects we refer to Bini and Pan [8, Chapter 2]. The
bit-cost of computing the determinant is

Dn,‖A‖ = O∼(nω+1 log ‖A‖) < O(n3.376 log ‖A‖).

Remark 1 A sub-problem of the computation of the sign or the determinant
is to determine whether a matrix is invertible or not—whether the determinant
is nonzero or not. This can be done by testing singularity modulo a randomly
chosen prime number p. If p is chosen in a sufficiently large set (large with
respect to n and log ‖A‖), this leads to a randomized Monte Carlo algorithm
(non certified) for testing singularity using O∼(n3 log log ‖A‖+n2 log ‖A‖) bit-
operations. One can choose p in a set of primes having O(log n + log log ‖A‖)
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bits (see [31, Section 3.2]). This technique may also be applied to Monte Carlo
rank computations and is related to the randomization of section 4. A singu-
larity certificate based on system solution will be given in remark 3. 2

3 Numerical computation of the sign

As opposed to using exact arithmetics, specialized algorithms based on float-
ing point operations have been intensively studied for computing the sign of
algebraic expressions in general and of the determinant in particular. As seen
above, using a small precision may support correct answer for special classes
of matrices or on the average but a high precision is needed in the worst case.
An interesting problem is to conceive adaptive algorithms that automatically
take into account these variations of the precision.

Here is our attempt to define this paradigm of algorithm design.

Definition 2 An algorithm is adaptive (input-sensitive, output-sensitive, in-
trospective) if its complexity is asymptotically below its worst case complexity
for a non-trivial subset of its inputs. 2

In the field of algebraic computing, important examples are Lenstra’s elliptic
curve integer factorization algorithm or Zippel’s sparse polynomial interpola-
tion algorithm. Others utilize a so-called “early termination” test. We discuss
early termination for Chinese remaindering in section 4.

One of the first specialized numerical method for the determinant, which
adapts the mantissa length of floating point numbers, is due to Clarkson [16]
(see also [11,12]). His algorithm works in two steps. From the input matrix A,
the first step is to accurately compute a matrix B which columns are “more or-
thogonal” than those of A. The process iteratively follows the Gram-Schmidt
orthogonalization but remains in a lattice and keep the sign of the determinant
unchanged. For a better comparison with the exact methods, it is interesting
to note that this process uses ideas from the Lenstra, Lenstra and Lovász
basis reduction algorithm [39]. Using good properties of B, especially a low
orthogonality defect, the second step consists in computing the sign of the
determinant by LU decomposition. The first step involves computations with
the precision of at most log ‖A‖+O(n) bits [12]. The arithmetic cost depends
on the orthogonality defect ∆(A) of A (see (2)) which is, similarly to the con-
dition number, in O∼(n log ‖A‖). When A is invertible, the defect bounds the
number of iterations of the first step of the algorithm. The overall cost is given
by

Sn,‖A‖(A) = O∼((n3 + n2 log ∆(A)) · (n + log ‖A‖)). (5)
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We may notice that using remark 1, the invertibility can be easily tested. In
the refined algorithms of Brönnimann and Yvinec [11,12], even for singular
matrices the bit-cost satisfies:

Sn,‖A‖ = O∼(n4 log ‖A‖ + n3 log2 ‖A‖). (6)

The first step of Clarkson’s approach is output sensitive since its cost depends
on the magnitude of the determinant. Favorable inputs are matrices with “not
too small” determinants, for instance with

log ∆(A) = O(n). (7)

In these cases the algorithm requires only O∼(n4 +n3 log ‖A‖) bit-operations.
From (1), this corresponds to matrices such that the condition number satisfies
log conddetA = O(n + log ‖A‖) and not Ω(n log ‖A‖) as in the worst case.
Likewise, the lattice algorithm of Brönnimann et Yvinec [12] generalizes to
high dimensions the method of Avnaim et al. [4] for dimensions 2 and 3, to
yield a bit-complexity bound similar (6).

To achieve better complexity bounds for well conditioned matrices, arith-
metic filtering has been much studied, especially for algebraic geometry prob-
lems (see the introduction). The idea is to rapidly evaluate the sign of the
determinant using fast floating point computations and then to certify the
sign using an error bound or some other fast certificates [28,38,44]. Exist-
ing filters / certificates rely on computed or estimated round-off errors and
distances to singular matrices. In particular, evaluations of latter distances
with a machine epsilon ε = O(log n) allows the filters in [38,44] to work cor-
rectly for well conditioned matrices. If the condition number is small—say
log conddetA = O(log n)—then the rank is certified using O∼(n3 log ‖A‖) op-
erations. More generally, with a singularity test as in remark 1 and as suggested
by Pan in [44, p. 715], by repeatedly doubling the precision, this leads to the
theoretical bound

Sn,‖A‖(A) = O∼
(

n3 · (log conddetA + log ‖A‖)
)

= O∼(n4 log ‖A‖). (8)

As one could naturally expect, this is highly sensitive to the condition number.

4 Chinese remaindering

Approaches based on computations modulo a collection of primes, together
with the reconstruction of integers using Chinese remaindering, are common
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in symbolic computation. In a way analogous to numerical algorithms that
are sensitive to the condition number, Chinese remaindering leads to exact
algorithms that are sensitive to the determinant. Here and in subsequent sec-
tions the techniques need randomizations. The idea is to compute residues
of the determinant modulo primes and to reconstruct the integer value of the
determinant “on the fly” (via Newton’s method, mixed radix representations).
The approach enables acceleration depending on the size of the determinant.
Once the reconstructed value remains stable for a relatively small number of
consecutive primes then the determinant is correct with constant probability
on any input. The corresponding bit-cost is:

Dn,‖A‖ ≤ O∼(n3 log | det A| log log ‖A‖ + n2 log ‖A‖ + log2 | det(A)|). (9)

On this early termination technique the reader refered to the detailed study
in Brönnimann et al. [10] and to Emiris [27] for remarks on success probabil-
ities. Even if the output is not certified (Monte Carlo algorithm), this gives
very good results especially for small determinants [10, Tables 2 & 3]. The
log2 | det(A)| term in (9) could be reduced by doubling the number of moduli
in each Chinese remainder update before checking if the result changes.

For the computation of the sign only, the authors of [10] also propose an im-
plementation of Chinese remaindering with constant precision numbers such
as usual floating point ones (via Lagrange’s method). The technique gener-
alizes the one in [5] for integer division. However, in sign computations, the
integer reconstruction is not the bottleneck and theoretical costs here remain
bounded as in (4).

5 Exact determinant and linear system solution

The first type of fast exact algorithms for computing the determinant exploits
Cramer’s rule and the relations between solving linear systems and determi-
nant computation. Both under algebraic complexity models and the worst case
bit-complexity it remains an open question whether linear system solution is
equivalent or strictly easier asymptotically than the determinant computa-
tion [7, p. 328]. For solving a linear system exactly over the rationals, we refer
to the p-adic approach (Hensel’s lifting) proposed by Moenck and Carter [40],
then by Dixon [23]. The bit-complexity for solving Ax = b with b ∈ Zn and
‖b‖ ≤ ‖A‖ is bounded by

Ln,‖A‖ = O∼(n3 log ‖A‖). (10)
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Hence, using classical matrix multiplication, exact system solution in the worst
case has the asymptotic cost of numerical determinant computation for well
conditioned matrices (see section 2). Further, as shown by Mulders & Storjo-
hann [41, Lemma 5.7], fast matrix multiplication techniques can be used and
give:

Ln,‖A‖ = O∼(nf(ω) log ‖A‖), with f(ω) ≈ 2.76. (11)

In [49], for an abstract commutative field K, Storjohann shows that if A and
b have polynomial entries of degree d in K[x] then the linear system Ax = b
may be solved in O∼(nωd) operations in K. An extension of this result to
the integer case could achieve Ln,‖A‖ = O∼(nω log ‖A‖) (see [49, §14] and the
discussion at the end of section 6).

Pan has proposed, in [43, Appendix] and in [45], a way to compute the deter-
minant of A using denominators of solutions to random systems:

Ax = b, b a random vector. (12)

Since the bit-cost of system solution is low, this idea should represent a gain.
However, under the influence of the invariant structure of the matrix —the
Smith normal form [42]—the gain does not appear directly in the worst case.
As experimentally studied by Abbott et al. [1] the gain is clear on the average
and in some propitious cases. Abbott et al. proceed in two phases. At first one
solves several random systems (12) to compute a large divisor σ of the deter-
minant. The second phase finds the missing factor (det A)/σ using classical
Chinese remaindering. With (10), the two phases lead to the bit-cost bound

Dn,‖A‖(A) = O∼

(

n3 ·
(

log

∏n
i=1 ‖ ai,∗ ‖

|σ| + log ‖A‖
))

. (13)

This is (4) in the worst case. Similarly to the discussion in section 3, advan-
tageous cases are those of matrices leading to large |σ|. For random matrices,
heuristic arguments in [1, Assumption 1] (see also some related expected values
in [25, Section 6]) give

log

∏n
i=1 ‖ ai,∗ ‖

|σ| = O(n).

This may be compared to (7). For such matrices the cost becomes O∼(n4 +
n3 log2 ‖A‖). Using randomization, one can go further on sensitivity aspects.
Indeed [1, Section 4], when solution vectors x are vectors of reduced rational
fractions then
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σ | sn and log

∏n
i=1 ‖ ai,∗ ‖

|σ| = log ∆(A) + log
| det A|

sn

+ log
sn

|σ| (14)

where sn is the Smith largest invariant factor of A (largest nonzero diagonal
entry of the Smith form). The term in log(sn/|σ|) introduced by (14) in the
cost (13) is limited to O(1) [1, Lemma 1]. The term in ∆(A) can be avoided
by the early termination randomized strategy seen in section 5. This leads to
a Monte Carlo algorithm with bit-cost bound:

Dn,‖A‖(A) = O∼

(

n3 ·
(

log
| det A|
|sn|

+ log ‖A‖
))

. (15)

This can be compared to (8): the structural parameter (det A)/sn plays a role
analogous to conddetA in the numerical computations. For random integer
matrices with log ‖A‖ > 3 log n, where the entries are uniformly distributed,
the expected value of sn is det A (by [25, Corollary 6.3] the expected number
of nontrivial diagonal entries of the Smith form is one). Thus the average cost
for computing the determinant satisfies:

E (Dn,‖A‖) = O∼
(

n3 · log ‖A‖
)

(16)

using a randomized Monte Carlo algorithm.

Remark 3 System solution also provides a certificate for matrix singularity.
Following remark 1 we work with a random prime p. Without loss of generality,
assume that the input matrix A has rank r modulo p and that its leading r× r
principal minor Ar is nonzero modulo p. With high probability, r is also the
rank of A over Q and if r < n then the solution vector u to the linear system

Aru = A(1,...,r),r+1 (17)

should be a vector in the nullspace of A. The singularity certificate computes
r modulo p, solves system (17) over Q and check whether Au = 0. 2

6 Exact determinant: better worst case bounds

All previously shown algorithms have bit-costs bounded like

bit-cost <∼ arithmetic cost × output maximum size (18)
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with approximate equality always attained in the worst case. We are going to
see two different ideas that actually lead to much smaller worst case complex-
ity estimates. Even based on the straightforward cubic matrix multiplication
algorithm those new algorithms bring the exponent of n below 4.

The first approach is, again, to take advantage of solving linear systems and
to look at the Smith normal form. Using arguments similar to those of previ-
ous section and from [25, Section 2], several solutions of linear systems with
random right-hand side vectors are sufficient to compute the largest entry sn

of the Smith normal form of A. The use of system solution can be extended
to computing the determinant by applying the same technique iteratively to
perturbations of A. This approach—initially proposed in [56] for computing
the characteristic polynomial of a sparse matrix—is developed in the integer
case by Eberly et al. [25]. The resulting randomized Monte Carlo algorithm is
sensitive to the size of the determinant and to a parameter φ(A), the number
of distinct invariant factors, which characterizes the Smith form. The number
of distinct invariant factors satisfies

φ(A) = O(
√

| det A|) ≤ O∼(
√

n log ‖A‖).

Together with (10), the corresponding cost (see [25]) is bounded by

Dn,‖A‖(A) = O∼(φ(A) · n3 log ‖A‖) = O∼(
√

| det A| · n3 log ‖A‖)
= O∼(n3.5 log1.5 ‖A‖).

(19)

In fact, the algorithm in [25] computes both the determinant and the Smith
normal form at the same bit-cost bound. Another variant based on system so-
lution has been designed to take advantage of fast matrix multiplication [25,
Section 5]. The determinant is computed as the product of large invariant
factors—using denominators of system solutions—and of smaller invariant
factors—using a direct algorithm for the Smith form [50].

Since φ(A) is small on the average [25, Corollary 6.3]:

E (φ) = O(log n), (20)

which shows that (16) was already established using (19).

To yield strict inequality in the bit-cost bound (18), the Smith form approach
has focused on the parameter φ(A). Another strategy has been applied ear-
lier on polynomial matrices by Kaltofen [34] and can be carried over to the
integer matrix case. The idea is to perform a large amount of precomputation
with shorter integers by applying Shanks’s “baby-steps, giant-steps” principle
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to Wiedemann’s determinant algorithm [57]. The number of arithmetic op-
erations on integers of length O∼(n log ‖A‖) is sufficiently reduced, and one
obtains a Las Vegas (certified) randomized algorithm with

Dn,‖A‖ = O∼(
√

n · (n3 log ‖A‖)) = O∼(n3.5 log ‖A‖) (21)

bit-complexity [34,37]. Unlike in Kaltofen’s 1992 paper, the integer matrix case
requires randomization. The algorithm has a Chinese-remainder based imple-
mentation and can be made sensitive to | det A|. For instance, if log | det A| =
O(n1−η log ‖A‖), where 0 ≤ η ≤ 1, the Monte Carlo running time [36] in
bit-operations using standard matrix multiplication is

Dn,‖A‖(A) = O∼(
√

log | det A| · log ‖A‖ · n3) = O∼(n3+ 1

2
− η

2 log ‖A‖). (22)

With asymptotically fast rectangular matrix product procedures, the cost of
the algorithm becomes [34]:

Dn,‖A‖ < O∼(n3.03 log ‖A‖). (23)

As initially conceived, the approach also leads to similar bounds for the
division-free complexity of the determinant over an abstract commutative ring
R. The determinant of a matrix in Rn×n can be computed in

Dn,R = O∼(n3.5) (24)

additions, substractions and multiplications in R (without divisions) or in
O(n3.03) ring operations if a fast matrix product is employed. The previously
known division-free determinant complexity was using Strassen’s technique
for division removal [53]. Similarly to (4) or (18), the best known cost bound
in R had been the product O∼(nω+1) of arithmetic cost times the size (degree
of the determinant of a degree one matrix polynomial).

By preconditioning the input matrix (in an algebraic sense [57,15]), Wiede-
mann’s algorithm first reduces the problem of computing the determinant to
the problem of computing the minimum polynomial. Then the latter polyno-
mial is computed à la Krylov-Lanczos. Kaltofen and Villard improve bounds
(21) and (23) by exploiting block projections during the Krylov-Lanczos step.
See [18,35,55] on some earlier applications of block Krylov-Lanczos and Wiede-
mann algorithm to other computational problems. Blocking further reduces
the operation count on large numbers and achieves the bit-cost

Dn,‖A‖ = O∼(n3+1/3 log ‖A‖)
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with straightforward arithmetics or, using fast polynomial arithmetic including
the half GCD algorithm on matrix polynomials [37],

Dn,‖A‖ = O∼(n3+1/5 log ‖A‖). (25)

The same asymptotic bounds in n work for the Smith normal form and the
division-free determinant complexity. Asymptotically fast square and rectan-
gular matrix multiplication can also be exploited and give

Dn,‖A‖ ≤ O(n2.698 log ‖A‖)

for the worst case bit-complexity of the Las Vegas randomized computation
of the determinant. As noticed by Pan, this asymptotically fast approach also
allows for extension of Kaltofen’s adaptative techniques (22), see [36, p. 143].

In addition to these improvements of bound (18) on the complexity of comput-
ing the determinant we may also mention the work of Storjohann for polyno-
mial matrices over an abstract commutative field K [49]. Using Hensel’s lifting
(section 5) for the solution of linear systems AX = B with B an n×m matrix,
Storjohann computes the determinant and the Smith normal form of an n×n
matrix of degree d over K[x] in O∼(nωd) operations in K. The algorithm
proceeds by repeatedly solving linear systems with matrix right-hand sides
of increasing column dimension m, each system leading to a group of invari-
ant factors of decreasing sizes. Even if the integer case is quite different than
the polynomial case one may think that this approach and the corresponding
complexity will be extended to integer matrices [49, §14].

7 Matrices of sparse numbers

In numerical computation, rather than studying the complexity with respect
to log ‖A‖, one may model the size of the entries of A using a mantissa size sx

and an exponent size ex. Following Priest [47] and using sparse high preci-
sion numbers, in the course of the algorithms we represent the numbers as
list of pairs (mantissa, exponent). The length of such lists may be arbitrarily
large, and the cost of an arithmetic operation +,−,× in this set of numbers
is polynomial in the size of the operands. Under this model, the problem of
the determinant is addressed by Demmel and Koev in [21]. The complexity
classes are different from those of the “classical” model in the previous sections.
Indeed, under this model the algorithms we have seen so far all require expo-
nential time. Assuming, for instance, ex = log log ‖A‖, all the cost functions
we have seen have the form nk(2ex)l for some integers k and l. Furthermore,
the straightforward method which computes the determinant using recursive
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minor expansions performs at a cost polynomial in sx and ex but exponen-
tial in n. Hence the question is left open whether it is possible to accurately
compute the determinant—and thus its sign—in time polynomial in sx, ex

and n [21, Section 12].

The general answer is not known but the answer is “yes” for a class F of ma-
trices whose determinant (viewed as a polynomial in the entries of A) admits
a special factorization (see [21, Theorem 3]). This class includes a significant
range of structured matrices. In terms of the bit-complexity model, the study
proves that the cost of accurate computations on those matrices is related to
log log ‖A‖ rather than to log ‖A‖. In particular one has

S̃n,‖A‖ = polynomial (n, log log cond A) = polynomial (n, log log ‖A‖)

where S̃n,‖A‖ is the sign computation complexity for input matrices in F .

8 Discussion

Focusing on the exponents of n, we recapitulate the different complexity esti-
mates in Table 1 below. Concerning the worst case exponent of n, the record
value has been progressing from 4 to 3 + 1

5
(with classical matrix multiplica-

tion). It is natural to hope for further evolutions independently of the choice
of the underlying arithmetic. As noticed at the end of section 6, one may hope
that the estimate O∼(nω log ‖A‖) will be achieved for the bit-complexity of
the sign and the determinant.

Apart from the worst case situations, the heuristic arguments in [1] and the
probability analysis in [25] show that Pan’s linear system based approach is
the symbolic companion piece to numerical results. Indeed, the numerical sign
estimate O∼(n3 log ‖A‖) for well conditioned matrices somehow corresponds
to the symbolic determinant estimate O∼(n3 log ‖A‖) for small values of φ(A).
However, one can also possibly identify here a difference between sign and de-
terminant computation. A small condition number does not seem to imply a
small number φ(A) of distinct invariant factors and vice versa. Another ad-
vantageous situation for exact computations is the case of small determinants
where Chinese remaindering performs very well. One wonders if eventually no
bad, i.e., supercubic, worst case inputs are left.

Missing aspects in this paper concern memory complexity, practical costs (log
factors are hidden in our soft-O notation) and discussions for particular classes
of matrices such as structured or sparse ones. We have seen that computing
the determinant of an integer matrix has strong links with computing the
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Smith normal form. For matrix polynomials, this shows that further studies
may also involve links with eigenvalues problems such as the characteristic
polynomial and the Frobenius normal form computation.

Table 1. Estimates for the bit-complexity of the sign and the determinant.

Exponents of n in O∼ functions for A ∈ Zn×n with ω = 3 and b = log ‖A‖.

Method Worst case Propitious case

Class. numerical – (3) n4b n3b

Class. exact – (4) n4b −

Certified sign (n3 + n2 log ∆(A)) · (n + b)

Sn,‖A‖(A) – (5) n4b + n3b2 n4 + n3b

Filters n3 · (log conddetA + b)

Sn,‖A‖(A) – (8) n4b n3b

Chinese remainders n3 · log | det A| · log b + n2b

Dn,‖A‖ – (9) n4b n3 log b + n2b

Linear systems n3 · (log(| det A|/|sn|) + b)

Dn,‖A‖ – (15) n4b n3b

Smith form φ(A) · n3b ≤
√

log | det A| · n3b

Dn,‖A‖ – (19), (20) n3+1/2b1+1/2 E (Dn,‖A‖) ≤ n3b

Division-free – (25), (22) n3+1/5b
√

b log | det A| · n3

We conclude that in the case of the determinant, speedup can be achieved
by exploiting the interplay of the algebraic structure with the bits of the
intermediately computed integers. Such could be the case when computing
the values of other polynomials, for instant, resultants.
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