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1. INTRODUCTION
In the first half of 2000, two new algorithms were discov-
ered for the efficient computation of the determinant of a
(dense) matrix with integer entries. Suppose that the di-
mension of the matrix is n × n and that the maximum bit
length of all entries is b. The algorithm by [10] requires

(n3.5b2.5)1+o(1) fixed precision, that is, bit operations. Here
and in the following we use the exponent “+o(1)” to cap-
ture missing polylogarithmic factors O((log n)C1(log b)C2),
where C1, C2 are constants (“soft-O”). As it has turned out
an algorithm in [15], which in turn is based on one by [31]
and which uses the baby steps/giant steps algorithm design
technique, can be adapted to the dense integer matrix de-
terminant problem and then has bit complexity (n3.5b)1+o(1)

[20, Section 2]. Both algorithms use randomization and the
algorithm in [10] is Monte Carlo—always fast and proba-
bly correct—and the one in [20] is Las Vegas—always cor-
rect and probably fast. Both algorithms can be speeded
by asymptotically fast subcubic matrix multiplication al-
gorithms à la Strassen [8, 7, 14]. By blocking [6, 16, 29,
30] the baby steps/giant steps algorithm can be further im-
proved, which yields the currently fastest known algorithms
[20, Section 3] of bit complexity (n3+1/3b)1+o(1), that with-
out subcubic matrix multiplication and without the FFT-
based polynomial “half” GCD procedures à la Knuth [23; 2,

Chapter 8], and of bit complexity n2.698b1+o(1) with subcu-
bic matrix multiplication and FFT-based polynomial GCD
procedures.

However, under certain favorable circumstances other algo-
rithms can be faster. In our survey [21] we list Gaussian
elimination combined with Chinese remaindering, Hensel
lifting [1] and the above cited result [10] as propitious. For
example, if the the determinant ∆ is a small integer, Chinese
remaindering can employ what is know as “early termina-
tion.” One chooses random moduli and stops as soon as the
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(balanced) residue does not change any further [4]. The bit
complexity of the resulting Monte Carlo algorithm is then
((log |∆|)n3 + bn2)1+o(1), that with standard matrix opera-
tions. If the input matrix has a large first invariant factor
in the Smith form, Hensel lifting can reconstruct the deter-
minant in cubic time. A small number of distinct invariant
factors is conducive for the method of [10].

This paper provides an adaptive version of the unblocked
baby steps/giant steps algorithm [20, Section 2]. The re-

sult is most easily stated when b ≤ log |∆| = (n1−ηb)1+o(1)

where ∆ is the determinant to be computed and η with
0 ≤ η ≤ 1 is not known. Note that by Hadamard’s bound
log2 |∆| ≤ n(b + log2(n)/2), so η = 0 covers the worst
case. We describe a Monte Carlo algorithm that produces
∆ in (n3+1/2−η/2b)1+o(1) bit operations, again with stan-
dard matrix arithmetic. The corresponding bit complex-
ity of the early termination Gaussian elimination method is
(n4−ηb)1+o(1), which is always more, and that of the algo-

rithm by [10] is (n3+1/2−η/2b1+1/2)1+o(1).

Our adaptive determinant algorithm can be speeded by use
of subcubic matrix multiplication algorithms so as to outper-
form an early termination Gaussian elimination algorithm
that employs subcubic matrix multiplication. Such results
seem, however, of purely theoretical interest; see Section 4
for a more in-depth discussion. Here we add that the expo-
nent “+o(1)” in the version that uses cubic matrix multi-

plication and that has bit complexity (n3+1/2−η/2b)1+o(1) is
introduced (except when b ≫ n) because the moduli of the
Chinese remainder algorithm cannot be chosen of fixed mag-
nitude. However, for all practical purposes primes with 32
or 64 bit will suffice to recover determinants of any reason-
able length, say of fewer 1010 binary digits. Therefore the
polylogarithmic factors in our complexity estimates do not
degrade the practical performance of our method.

In section 2 we shall give the probability and complexity
analyses for Chinese remaindering with early termination.
Our bounds are valid for any algorithm that uses Chinese
remaindering and thus of broader interest. For this reason,
we carry out the analyses allowing for so-called thresholds.
Thresholds are useful when the probability becomes too high
that a single new modulus falsely triggers the early termi-
nation condition, which checks that the current residue can-
didate remains unaffected by the new modulus. Instead one
requires that the residue does not change when adding in the
Chinese remainder algorithm ζ new moduli. We call ζ the
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threshold of early termination. For polynomial interpolation
the benefit of higher thresholds, both theoretically and prac-
tically, are discussed in [17, 22]. We give the corresponding
analyses for Chinese remaindering.

Section 3 presents the adaptive determinant algorithm and
section 4 mentions improvements by subcubic matrix mul-
tiplication.

2. CHINESE REMAINDERING WITH
EARLY TERMINATION

Let us suppose that we perform the Chinese remainder al-
gorithm with a list of distinct prime module p1, p2, . . . , pm

and for an integer M 6= 0 we reconstruct an integer N ≡M
(mod p1 · p2 · · · pm) from the residues M mod pi, where 1 ≤
i ≤ m. The Newton interpolation (method of divided differ-
ences) algorithm applied to the Chinese remainder problem
computes the mixed radix representation for N , namely the
integer coefficients ci such that

N = c0 + c1p1 + c2p1p2 + · · ·+ cδ−1p1 · · · pδ−1,

where 1 ≤ δ ≤ m, cδ−1 6= 0, |ci| < pi+1

and sign(ci) = sign(N) for 0 ≤ i ≤ δ − 1. (1)

The algorithm is iterative and uses the formula

ci = (N − c0 − c1p1 − · · · − ci−1p1 · · · pi−1)

· (p1 · · · pi)
−1 mod pi+1. (2)

The required number of residue operations, including di-
visions, are of order O(m2). As is indicated in (1), the
sign of the mixed radix coefficients ci is dependent on the
sign of N . The number δ of coefficients is determined by
the magnitude of the absolute value of N as that index
value satisfies p1 . . . pδ−1 ≤ |N | < p1 · · · pδ. If N < 0
the mixed radix representation for N ′ = p1 · · · pm + N =
c′0 + c′1p1 + · · ·+ c′m−1p1 · · · pm−1 yields the one for N ,

N = (−p1 + c′0) + (−p2 + c′1 + 1)p1 + · · ·

+ (−pm + c′m−1 + 1)p1 · · · pm−1. (3)

The early termination strategy determines δ in (1) by first
picking random prime moduli p1, . . . , pm of a certain mag-
nitude and then stopping when ζ ≥ 1 many consecutive
residues are found to be zero for the first time, that is
ci = · · · = ci+ζ−1 = 0. In that case the algorithm asserts
δ to be with high probability equal to i. Note that in our
formulation the test is only valid for i ≤ m − ζ, because
we always stop after m moduli. Following [17] we call ζ
the threshold of early termination. The strategy is justified
in the sense of a Monte Carlo algorithm because with high
probability the condition cannot occur for i < δ. We shall
give the probabilistic analysis now.

Theorem 1. Let p1, . . . , pm be distinct prime numbers
that are uniformly and randomly selected from the interval
2 ≤ pi ≤ mγ log(m) for all i with 1 ≤ i ≤ m, where γ is a
real constant with γ > 1 and ζ a threshold with ζ ≥ 1. For
the coefficients ci we then have the following estimate on the

probability

Prob(∀i, 0 ≤ i ≤ δ − ζ − 1: ∃j, 0 ≤ j ≤ ζ − 1: ci+j 6= 0)

≥ 1−O(1/mζ(γ−1)−1). (4)

Proof. We first prove that the probability that in (1) ci =
0 for a given i < δ is O(1/mγ−1). By (2) the prime pi

must divide Ni = N − c0 − c1p1 − · · · − ci−1p1 · · · pi−1. We
have |Ni| < p1 · · · pm ≤ Bm, where B = mγ log(m) is the
bound on the magnitude of the moduli. We shall compare
two counts: the maximum number of prime divisors of Ni

versus the number of primes from which pi can be chosen.
Inequalities for these counts can be given from properties of
the distribution of prime numbers, namely

Y

p prime
p≤x

p > eC1x, π(x) =
X

p prime
p≤x

1 >
C2x

loge x
, π(x) <

C3x

loge x
(5)

where C1, C2 and C3 are positive constants. Explicit values
for C1, C2 and C3 have been derived. It is shown in [25] that
for x ≥ 101 we may choose C1 = 0.84, for x ≥ 17 we may
choose C2 = 1, and for x ≥ 114 we may choose C3 = 1.25.
From (5) it follows that if x0 is such that eC1x0 = |Ni| then
the number of distinct prime factors of Ni is less than π(x0).
We have x0 = O(m log B) where log(B) = O(log m). Hence
π(x0) < C3x0/ log(x0) = O(m). The number of available
primes for pi is π(B)− i+1, the difference by i−1 excluding
the primes p1, . . . , pi−1 to be picked. From the magnitude
of B, γ > 1 and (5) we infer the existence of a real constant
C4 > 0 such that π(B)− i+1 > C4m

γ . We have established
our initial claim.

We conclude the proof similarly to [17, Theorem 4]. The

probability that 0 = ci = · · · = ci+ζ−1 is O(mζ(γ−1)). The
events are dependent for i = 0, 1, . . . , δ− ζ−1. Nonetheless,
the probability that at least for one i a sequence of ζ zero
coefficients occurs is O((δ−ζ)mζ(γ−1)), which estimates the
sum of the probabilities. The theorem gives the probability
for the complementary event with the looser bound m >
δ − ζ. ⊠

Next we shall discuss several issues of practicality. It is
important to realize that the estimate (4) is lower bound
for the stated probability. Even for γ = ζ = 1 the actual
probability may be bounded away from zero and the early
termination algorithm may correctly terminate at cδ+ζ = 0.
We note that the constant implied by the big-O in the lower
bound (4) can be explicitly calculated if one wishes to guar-
antee the termination with a given probability, although
that claim would also require true random choices for the
prime moduli. In practice, it seems important to work with
thresholds ζ ≥ 2. One reason is already exhibited by the
estimate (4): higher thresholds permit smaller moduli. For
instance, if γ = 2 we obtain a probability bound away from 0
for threshold ζ = 2, namely 1−O(1/m). Another reason is
that in the Chinese remainder setting it is advantageous to
preselect the stream of prime moduli p1, p2, . . . so that one
can precompute constants that are independent of the in-
put residues M mod pi, for instance (p1 · · · pi)

−1 mod pi+1

in (2). Such moduli are not random, but with a higher
threshold one can avoid a premature termination for many
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inputs. An additional postcheck of the result at one or sev-
eral additional random moduli is often possible and further
reduces the chance of producing an erroneous result. An
empirical study on how the threshold and postcheck count
parameters improve the success rate for small moduli, in the
setting of polynomial interpolation, can be found in [17, 22].

The early termination strategy seems to belong to the “folk-
lore” of computer algebra. We have used early termination
in the mid-1980s [12, 19] for purpose of determining the de-
gree of a straight-line and black box polynomial. Our algo-
rithms perform Newton interpolation at non-random points
and test whether the interpolant agrees with the input poly-
nomial at a random point, thus allowing for precondition-
ing in the interpolation process while guaranteeing a given
probability of success. Chinese remaindering with early ter-
mination is applied to exact computations in geometry by
[11]. Our discussion above introduces thresholds. We for-
mulate the problem without a bound on the magnitude M ,
but note that the lack of a bound on |M | prevents probabil-
ity guarantees to be made about the correct recovery of M
(as N) when early termination has occurred. Nonetheless,
the test seems to be a reasonable heuristic even under those
circumstances.

We now turn to bit complexity considerations of the Chinese
remainder problem. Suppose that the moduli are bounded
as in Theorem 1, namely pi = mO(1) for all 1 ≤ i ≤ m.
As stated above, the Newton interpolation formula (2) costs

O(m2) residue operations and therefore m2+o(1) bit oper-
ations. Here we shall remark that the exponent “+o(1)”
is for most practical purposes equal to 0. If we choose
moduli of 32 bits we have by (5) at least 1.98 · 108 primes
at our disposal, for 64 bits at least 4.20 · 1017. However,
the method is still quadratic in m, and for later asymp-
totically fast analysis we shall discuss how to reduce the
complexity to m1+o(1) bit operations. We note that these
fast methods may not be of practical significance. For Chi-
nese remaindering by the Lagrangian interpolation formula
the tree-like evaluation schemes, which yield a bit com-
plexity of O(L(log L)2 loglog L) where L = log(p1 · · · pm)
are discussed in [13; 2, Chapter 8]. The Lagrangian for-
mula produces N in binary representation, which could be
converted to mixed radix representation with an additional
O(L(log L)2 loglog L) bit operations. The straight-forward
divide-and-conquer technique seems to yield O(L(log L)3×
loglog L) bit complexity when applied directly to the Newton
interpolation approach.

However, the Lagrangian algorithm is “offline,” meaning
that for an additional new modulus and residue one starts
over at the beginning. Asymptotically, the bit complexity
will not be affected in our baby steps/giant steps algorithm,
as we explain now. The determinant algorithm performs
Chinese remaindering for

µi = b(4+42 + · · ·+4i) = (4/3)b(4i− 1), i = 1, 2, . . . (6)

moduli at a time. In the above equation (6) the integer b ≥ 1
is an additional parameter. The early termination criterion
now checks for each i if

N < p1 · · · pµi−ζ or p1 · · · pµi
−N < p1 · · · pµi−ζ , (7)

so the mixed radix representation needs not to be computed.

When the point is reached where

|M | < p1 · · · pµk−ζ , (8)

the algorithm stops because then the early termination cri-
terion is satisfied for sure for the moduli p1, . . . , pµk

. Here k
is the last value of i in the iteration assuming no false early
termination has occurred. Since we have Hadamard’s bound
for the determinant, we shall continue the complexity anal-
ysis in terms of |M |, a bound H ≥ |M |, and the threshold
ζ. Thus the probability of correct recovery can be properly
estimated. We note that with a bound H ≥ |M | for large
M one may be able to stop when 2H < p1 · · · pm thereby
avoiding to verify the threshold condition for pm+1, . . . We
can make the following simplifying assumption. Because we
now know that m = 1 + ⌈log2 H⌉ is a sufficient number of
moduli (pj ≥ 2), by (4) in Theorem 1 we can for all moduli
choose the bound

pj ≤ mγ log(m) = O(BH)

with BH = (log H)γ loglog H. (9)

We shall show that for random moduli of such size the bit
complexity of the early termination strategy with the iter-
ation (6) and using fast Lagrangian Chinese remaindering
and the termination test (7) is

O(L(log L)2 log L)

where L = (ζ + b + log |M |) loglog H. (10)

For each i the interpolation including the early termina-
tion test (7)—the products p1 · · · pµi−ζ and p1 · · · pµi

are
computed via a tree [2, Algorithm 8.4]—has bit complexity
O(Li(log Li)

2 loglog Li) with Li = µi log(BH). By summing
Pk

i=1 µi = O(µk) (see (6)) the total bit complexity remains
O(Lk(log Lk)2 loglog Lk).

Finally, if for an integer ν with

µν−1 = 4/3b(4ν−1 − 1) ≤ ζ + log2 |M |

< µν = 4/3b(4ν − 1), (11)

we have k ≤ ν. The latter follows from p1 · · · pµν−ζ ≥
2µν−ζ > |M |, which satisfies (8). We conclude that µk ≤
µν = 4µν−1 + 4b ≤ 4(ζ + b + log2 |M |) and hence by (9) the
bit length satisfies log(p1 · · · pµk

) ≤ µk log(BH) = O((ζ +
b + log |M |) loglog H), as is stated in (10).

3. BABY STEPS/GIANT STEPS WITH
EARLY TERMINATION

The baby steps/giant steps algorithms of [20] can utilize the
early termination property of Chinese remaindering with
random prime moduli that was discussed in the previous
section. The idea is to double the baby step range r and
quadruple the number of prime moduli until the determi-
nant stabilizes. We assume that we have chosen a stream
of random prime residues p1, p2, p3, . . . and that the mixed
radix representation of det(A) with respect to those primes
satisfies the early termination condition of Section 2, that is
has no zero coefficients or, more formally, for

det(A) = c0 + c1p1 + c2p1p2 + · · ·+ cδp1 · · · pδ−1 (12)

either 0 < ci < pi+1 for all i or −pi+1 < ci < 0 for all pi

(cf. (1)). The assumption can be weakened to excluding a
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block of ζ consecutive zero coefficients, formally ∀0 ≤ i ≤
δ− ζ− 1: ∃0 ≤ j ≤ ζ− 1: ci+j 6= 0. We then call ζ the used
threshold of termination. As we have shown in Theorem 1
above, a threshold ζ > 1 increases the probability of correct
early termination.

For the remainder of this section, we shall discuss early ter-
mination for our baby steps/giant steps version [20, sec-
tion 2] of Wiedemann’s original determinant algorithm [31,
section V]. Improvements by fast matrix multiplication are
deferred to section 4. While Wiedemann intended his al-
gorithm for sparse matrices over finite fields, we apply his
method to dense matrices with integer entries. First, we
describe the method in its entirety.

Algorithm Adaptive Baby Steps/Giant Steps Determinant
Input: a matrix A ∈ Z

n×n and an early termination thresh-
old ζ ≥ 1.
Let b be the maximum bit length of all the entries in A,
and let H = 2bnnn/2 be Hadamard’s determinant bound
H ≥ | det A |, and let h = log(H) = (nb)1+o(1).
Output: an integer N such that

N = det(A) with probability 1−O(1/hζ(γ−1)−1),

or “failure.” Here γ > 1 is a constant that controls the mag-
nitude of the moduli (cf. Theorem 1 and (9)). The proba-
bility that failure arises is given in the proof of Theorem 2
below.

Step 1. Precondition A such that the minimum polynomial
of the new matrix is equal its characteristic polyno-
mial, provided A was non-singular on input. We have
two very efficient preconditioners at our disposal. The
first is A← DA where D is a random diagonal matrix
with the diagonal entries chosen uniformly and inde-
pendently from a set S of integers [5, Theorem 4.3].
The second is A← EA where

E =

2

6

6

6

6

4

1 w1 0 . . . 0

0
. . .

. . .
...

...
. . . 1 wn−1

0 . . . 0 1

3

7

7

7

7

5

, wi ∈ S.

[28]. The product DA is slightly cheaper than EA,
but recovery of det(A) requires division by det(D).
Thus, all moduli that divide det(D) would have to be
discarded from the Chinese remainder algorithm for
the first preconditioner. The desired property, namely
that the minimum polynomial is the characteristic poly-
nomial in the nonsingular case, is achieved for both
preconditioners with probability 1 − O(n2/|S|). We

shall choose S = {i | −nγ′

≤ i ≤ nγ′

}, where γ′ > 2 is
a real constant.

Step 2. Initialize r ← 1; Z ← A;
assign to u, v random vectors in Sn. Now with proba-
bility 1−O(n/|S|) [18, Lemma 2] the minimum linear
generator of uTrAiv for i = 0, 1, . . . is equal to the mini-
mum polynomial of A. By Step 1 this will be with high
probability the characteristic polynomial, from which
the determinant of the input matrix is extracted. We
note that if either the preconditioning in Step 1 or the

bilinear projections u, v are unlucky, the degree of the
minimum generator will be less than n.

While early termination has not occurred in Step 8
Do Steps 3–8;

Step 3. Set the baby steps length r ← 2r; note that the
i-th time in the loop we have r = 2i. s← ⌈2n/r⌉.
We pick a new list of d = r2b distinct random primes
pt+1, . . . , pt+d no greater than hγ log h (see (9)). Note
that at this point we already have Chinese remaindered
det(A) with as many as t = µi−1 = (4+16+· · ·+4i−1)b
prime moduli (cf. (6)) as we reach this point for the
i-th time, for i ≥ 2; for i = 1 we have t = 0.

Step 4. For j = 1, 2, . . . , r−1 Do v[j,l] ← Ajv mod pt+l for
all 1 ≤ l ≤ d;

Step 5. Z ← Z2; note that now Z = Ar.

Step 6. For k = 1, 2, . . . , s Do (u[k,l])Tr ← uTrZk mod pt+l

for all 1 ≤ l ≤ d;

Step 7. For j = 0, 1, . . . , r − 1 Do
For k = 0, 1, . . . , s Do

(uTrAkr+jv mod pt+l) = a
[l]
kr+j ←

(u[k,l])Trv[j,l] mod pt+l;
for all 1 ≤ l ≤ d;

Step 8. For l← 1, 2, . . . Until l = d Do

From [a
[l]
i ]0≤i<2n try to compute det(λI−A) mod pt+l.

If the degree if the minimum generator is below n and
the constant coefficient is not 0, discard pt+l. If the
preconditioning of Step 1 or the projections of Step 2
were unlucky, no modulus will succeed except possibly
those dividing the determinant. We therefore cannot
skip over an arbitrary number of moduli here, but shall
terminate the algorithm with “failure,” again after a
certain threshold ζ′ of encounters of that situation.

If the the sequence a
[l]
i has revealed (det(A) mod pt+l)

extend the mixed radix representation for det(A) with
the obtained value. Check if ζ many mixed radix coef-
ficients ci in a row are zero for either N = (det(A) mod
p1 · p2 · · · pt+l) or for p1 · p2 · · · pt+l − N . The mixed
radix coefficients for the latter can be computed via
(3). An alternative check is (7). If the check succeeds,
exit the loop and return N . ⊠

We shall give the running time in terms of n, b and δ′ =
log2 | det A | ≥ δ, where δ is defined in (12), The point is
that after no more than δ + ζ many primes the early termi-
nation condition must be triggered. It remains to determine
how many bit operations are performed when the above al-
gorithm examines δ + ζ many primes.

Theorem 2. The adaptive baby steps/giant steps deter-
minant algorithm requires on any matrix A an order of

(
p

b(b + ζ + log | det A |) · n3)1+o(1)

bit operations, where the +o(1) exponent captures poly-loga-
rithmic factors and big-O constants. The algorithm does not
return “failure” with probability greater than 1/2.
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Proof. We first analyze the bit complexity. Capturing poly-
logarithmic factors via “+o(1)” exponents, for each indi-

vidual iteration Steps 5 and 6 perform (rn3b)1+o(1) bit op-
erations. In Step 5 a single matrix multiplication is done
on integers of length (rb log n)1+o(1). For Step 6 we have
dsn2 = O(r2b(n/r)n2) operations modulo the selected small
primes from the stream. The cost of Step 6 includes tak-
ing Z modulo d = r2b primes, which costs (r2bn2)1+o(1) by
remaindering modulo many primes via tree evaluation [2,
Algorithm 8.4].

Step 4 is bounded by (r2bn2)1+o(1). We first compute the
vectors Ajv with exact integer entries of length no more
than (rb log n)1+o(1). We then take the rn entries modulo

the d = r2b primes in (r2brn)1+o(1) bit operations. Step 7

is bounded by (drsn)1+o(1) bit operations, which is like in

Step 4 (r2bn2)1+o(1).

Step 8 first does Berlekamp/Massey iterations modulo each

pt+l, which costs in total (r2bn2)1+o(1) bit operations. With
classical Newton iteration, the Chinese remainder updates
cost O(d2) residue operations, which introduces a b2 term
in the bit complexity. The bit complexity can be reduced
to (r2b log h)1+o(1) by the asymptotically fast methods dis-
cussed at the end of section 2.

We now sum up all individual running times over the dura-
tion of the while-loop. The algorithm stops for i = k with

µk = (4 + 16 + · · ·+ 4k)b ≥ δ + ζ > µk−1

(cf. (11)). Thus 1/3b(4k − 4) < δ + ζ which implies 4k =
O((δ + ζ + b)/b). The overall cost is

(2n3b + 4n3b + 8n3b + · · ·+ 2kn3b)1+o(1),

which summed up is (2kbn3)1+o(1) and by the bound on 4k =

(2k)2 the total bit complexity (
p

b(δ + ζ + b) · n3)1+o(1).

The bit operation counts for Steps 1–3 are dominated by the
bit complexity (bn3)1+o(1). From the bound H we know that

δ + ζ = (bn)1+o(1), which is proportional to the number of
primes needed. Each random prime has bit length O(log h)
and can be computed by any of the randomized Monte Carlo
algorithms in (log h)O(1) bit operations.

It remains to estimate the probability of failure. Our algo-
rithm returns “failure” under several circumstances. First,
the algorithm may fail to establish a stream of distinct ran-
dom primes. Second, the Wiedemann-style randomizations
in Steps 1 and 2 may be unlucky. And third, in Step 8 we
may encounter unusable moduli even in the presence of good
choices in Steps 1 and 2. The first condition is avoided with
probability no less than 1 − (bn log h)1+o(1)/2w. Here the
quantity bn log h is proportional to the number of integers
tested, the log h factor representing the prime density (5).
The integer w is the number of witnesses for compositness
that are probed for each integer. We shall tacitly assume
that we have a random number generator for distinct inte-
gers in a given range. Wiedmann-style randomizations are

successful with probability no less than 1−O(1/nγ′−2).

Finally, we give a condition that excludes unlucky moduli
in Step 8. Let ϕ be the degree of the minimum polynomial

of the preconditioned matrix A, and let ai = uTrAiv ∈ Z.
Consider the Toeplitz matrix

T =

2

6

6

6

6

6

6

6

6

4

aϕ−1 aϕ−2 . . . a1 a0

aϕ aϕ−1 . . . a2 a1

... aϕ

. . .
... a2

...
...

a2ϕ−3 aϕ−1

a2ϕ−2 a2ϕ−3 . . . aϕ aϕ−1

3

7

7

7

7

7

7

7

7

5

.

By the theory of linearly generated sequences [18, Lemma 1],
any prime pt+l that does not divide the determinant of T
has the modular image of the rational linear generator as its
modular generator. We have log | det T | = (n2b)1+o(1) and
hence by arguments similar as in the proof of Theorem 1,
none of the selected primes divide det(T ) with probability

no less than 1− (δ + ζ)(log | det T |)1+o(1)/hγ , or in terms of

n and b, no less than 1− (n3b2)1+o(1)/(nb)γ . ⊠

For example, if log | det A | = O(n1−ηb), where 0 ≤ η ≤ 1,

and ζ = O(1), we obtain bit complexity (n3+1/2−η/2b)1+o(1).
The algorithm is randomized of the Monte Carlo kind. If
the early termination condition is falsely discovered by a
choice of unlucky moduli, an incorrect value for the deter-
minant is returned. For very small determinants | det A | +
ζ < b it is faster to perform early termination Chinese re-
maindering with Gaussian elimination with a complexity
(n3 log | det A |+ n2b)1+o(1).

We end this section with a historical remark. The notion of
the “baby steps/giant steps” algorithm design paradigm was
coined by Daniel Shanks in the late 1960s for several number
theoretic algorithms. Our application of this paradigm is
reminiscent of the algorithm by [24] for evaluating a scalar
polynomial at a matrix.

4. SPEEDUP BY FAST MATRIX MULTIPLI-
CATION

The non-adaptive baby steps/giant steps determinant algo-
rithm was speeded by several techniques. One, which is al-
ready proposed in [15], employs asymptotically faster matrix
multiplication algorithms à la Strassen. In fact, there are
two improvements, one based on fast square matrix multi-
plication [8] and one in a “Note added in proof” posted in the
web copy of the paper at http://www.math.ncsu.edu/∼kaltofen,
which also utilizes the special complexities of rectangular
matrix multiplication [7, 14]. A more significant improve-
ment is the use of blocks of vectors in place of the sin-
gle projection vectors u, v [20, Section 3]. Again, one ob-
tains running times using standard matrix multiplication
and faster ones using asymptotically fast matrix multiplica-
tion. Finally, one may employ the half GCD algorithm for
the Berlekamp/Massey step [3], which computes the mini-
mum polynomial of the sequence of projected matrix powers,
but which in the blocked case operates on polynomials with
matrix coefficients (see, e.g., [27]). We note that our asymp-
totically fast Chinese remainder method of section 2 already
made use of the half GCD algorithm.

Fast matrix multiplication allows for improvement of our
adaptive techniques similar to the ones discussed in [15],
which may only have a theoretical relevance. Asymptoti-
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cally fast matrix multiplication is not entirely impractical.
One referee has pointed us to [9], where is is shown that
for n ≥ 128 Strassen’s algorithm can outperform the clas-
sical cubic method for matrices with floating point entries
on an Apple G4 computer. Unfortunately, except in Step 5,
the baby steps/giant steps algorithm of Section 3 employs
Strassen’s matrix multiplication algorithm to matrices of di-
mension n0.45 × n0.45 [15, Note added in proof in 1995] in
order to lower the asymptotical complexity, which becomes
practical only for very large n.

Let ω be the exponent for fast square matrix multiplication.
The dominant costs are in Steps 5 and 6 of the adaptive baby
steps/giant steps determinant algorithm. Clearly, Step 5 can

be executed in (rbnω)1+o(1) bit operations. Step 6 can be
implemented in

( s
“ n

d/(rb)

”2“ d

rb

”ω

rb )1+o(1) (13)

bit operations as follows. We compute s products

(u[k+1])Tr ← (u[k])TrZ mod pt+1 · · · pt+d.

The vectors u[k,l] are obtained by taking each entry of the re-
sulting vectors modulo all pt+l by a tree-based remaindering
algorithm. Each matrix times vector product is performed
by splitting the integer entries in (u[k])Tr, which are O(d) bits
long, into blocks of br digits, which is the asymptotic length
of the entries in Z. We then perform the d/(br) × n times
n×n matrix product with square d/(br)×d/(br) blocks. We
note that asymptotically fast rectangular matrix algorithms
can slightly speed the complexity here.

If one chooses d = r(ω−1)/(ω−2) b/n(3−ω)/(ω−2) the complex-

ity (13) again is (rbnω)1+o(1). The rest of the analysis is as
in section 3 and leads for log2 | det A | = O(n1−ηb) to a total
bit complexity of

(n(ω2−ω+1−η(ω−2))/(ω−1)b)1+o(1)

which for ω = 2.375477 is n3.1025−0.2730ηb1+o(1). For 0 ≤
η ≤ 0.3754 the algorithm out-performs Gaussian elimination
with early termination Chinese remaindering, which has bit
complexity (nω+1−ηb)1+o(1).

The asymptotically fast analysis above shows that fast ma-
trix multiplication algorithms yield reduced exponents when
applied to the baby steps/giant steps method in conjunction
with the early termination strategy. By blocking, the bit
complexity of the non-adaptive baby steps/giant steps deter-

minant algorithm can be reduced to n2.698b1+o(1) [20], again
using asymptotically fast polynomial and matrix algorithms.
A further reduction to (nωb)1+o(1) may be possible by en-
tirely different and new techniques [26]. On January 25,
2002, Victor Pan sent me a hand-written draft by fax that
sketches how to apply the early termination strategy to the
blocked version of the baby steps/giant steps determinant
algorithm by [20] (for the case where cubic time matrix
multiplication is used). Which among these methods, the
unblocked or blocked adaptive baby steps/giant steps deter-
minant algorithms or Storjohann’s algorithm, which certifies
the determinant, yields faster solutions in practice remains
to be studied.
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et de Mathématiques Appliquées de Grenoble,
www.imag.fr, Apr. 1997.

[31] Wiedemann, D. Solving sparse linear equations over
finite fields. IEEE Trans. Inf. Theory it-32 (1986),
54–62.

144

www.imag.fr

	Introduction
	Chinese remaindering with early termination
	Baby steps/giant steps with early termination
	Speedup by fast matrix multiplication
	REFERENCES 

