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1. INTRODUCTION
Let f(x1, . . . , xn) ∈ D[x1, . . . , xn] be a multivariate poly-
nomial whose coefficients are in an integral domain D. A
sparsest shift is a vector (s1, . . . , sn) ∈ K, where K is the
field generated by the coefficients of f , such that for

f(x1, . . . , xn) =
t

X

i=1

ci(x1 + s1)
ei,1 · · · (xn + sn)ei,n ,

where ci ∈ K \ {0}, the number of (shifted) terms t is min-
imized. The problem of computing an absolutely sparsest
shift seeks a vector (s1, . . . , sn) ∈ K

n
, where K is the alge-

braic closure of K, such that the number of shifted terms is
minimized. Those sparsest shifts need not be unique: con-
sider f = x2 + x + 1. There are 3 absolutely sparsest shifts
with t = 2, namely s = −1/2, s = ρ1 and s = ρ2 where
f = (x−ρ1)(x−ρ2). However, in [16] it is shown that in the
univariate case (n = 1) over a field of characteristic 0 the
absolutely sparsest shift is a unique element in K whenever
t ≤ (deg(f)+1)/2. We note that some generalizations of the
uniqueness properties exist to the multivariate case [11, 10].
In section 4 we generalize the problem further by specifying
an additional input set S to which the shift vector shall be
restricted.

Sparse shifts can dramatically reduce the size of the an-
swer of a symbolic expression. A classical example, due to
Joel Moses, is

R

1 + (x + 1)ndx = x + (x + 1)n+1/(n + 1).
Sparse shifts can be useful when interpolating the black box
polynomial outputs of the algorithms in [13], say the black
box for the irreducible factors of a matrix determinant with
symbolic entries. It is possible that a sparse shift can make
a factor manageable, while the standard representation, in
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Knuth’s words [15], “would fill the universe.” Algorithms
for computing a sparse shift could therefore be considered
simplification tools.

We give a new class of algorithms for efficiently computing
a sparsest or absolutely sparsest shift. Our algorithms are
based on the early termination version [12] of the Ben-Or/
Tiwari sparse interpolation algorithm [1]. The main idea is
that for a symbolic set of interpolation points, a shift must
be a root of a discrepancy in the Berlekamp/Massey algo-
rithm [18], which is called by the Ben-Or/Tiwari method.
A sparsest shift is the first such zero to occur. We note that
our approach is similar to [7], who use Wronskians (see [9])
in place of discrepancies. Here we can assume that the in-
put polynomial f is being interpolated and we are given a
black box procedure for its evaluation. For coefficient fields
of small cardinality we require that the black box allows
evaluations on points from an extension field [8], which can
be realized in a computer program as the so-called extended
domain black box object of [5]. We note that for sake of
efficiency it is sometimes useful to compute the coefficients
of f via interpolation before employing our methods.

Through randomization we can dramatically improve the
efficiency of our algorithms. Our randomization is of the
Las Vegas kind—always correct and probably fast—because
one may always check a candidate sparsest shift via any of
the variants of the Ben-Or/Tiwari sparse interpolation algo-
rithm. First, we may choose random values as interpolation
points rather than symbolic ones, and employ the probabilis-
tic analysis of [4, 21, 20]. In the univariate case we replace
the polynomial root finder by a GCD procedure. This is
possible since the sparsest shifts are the roots of a sequence
of discrepancies. We can provide a complete probabilistic
analysis when the algorithm is run on two independent tri-
als or when all discrepancies up to 2 deg(f) are considered.
We propose the use of the GCD of two or three subsequent
discrepancies in practice, but so far this must be considered
a heuristic. For K = Q and again n = 1, we can further
eliminate the indeterminate shift variable in our algorithm
by evaluating at random integers such that the shift is deter-
mined through a large prime factor. For that case we thus
have (heuristically) reduced our method to a single Berle-
kamp/Massey run on rational numbers; we can provide proof
for a method that uses 10 independent trials with the pro-
vision that the sparsest shift is unique, for instance, when
t ≤ (deg(f) + 1)/2.
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The running times of our methods compare favorably with
the previously best algorithms [7, 11, 16, 10]. Not account-
ing for the length of the intermediately computed scalars,
our method at its best, in the univariate rational case when
no symbolic value for the shift is carried along, requires
O(t2) operations and O(t) evaluations of f . The algorithm
in [16] uses O(t2 deg(f)+t5) arithmetic operations and 4t+2
values of f and its derivatives. We note that [7] have estab-
lished the problem to be in polynomial-time. Both ours
and Lakshman & Saunders’s estimates are given under the
assumption that quadratic time polynomial multiplication
is employed. The slower version of our univariate algo-
rithm, which carries a symbolic value for the shift, requires
O(t3 deg(f) + t2 deg(f)2 log t) operations and O(t2 deg(f))
polynomial evaluations, which for small t is worse than [16].
However, only a careful experimental comparison of both al-
gorithms, which also controls the length of the intermediate
scalars can fully determine which of these two algorithms is
better. We intend to do this in the immediate future.

As a sub-procedure our algorithm executes the Berlekamp/
Massey algorithm on a sequence of large integers or poly-
nomials. We give a fraction-free version of the Berlekamp/
Massey algorithm, which does not require rational numbers
or functions and GCD operations on the arising numerators
and denominators. The relationship between the solution of
Toeplitz systems, Padé approximations, and the Euclidean
algorithm is classical. Fraction-free versions [3] can be ob-
tained from the subresultant PRS algorithm [2]. Dornstetter
[6] gives an interpretation of the Berlekamp/Massey algo-
rithm as a partial extended Euclidean algorithm. We map
the subresultant PRS algorithm onto Dornstetter’s formula-
tion. We note that the Berlekamp/Massey algorithm is more
efficient than the classical extended Euclidean algorithm.

2. THE FRACTION-FREE BERLEKAMP/
MASSEY ALGORITHM

The Berlekamp/Massey algorithm [18] processes a sequence
of elements a0, a1, . . . from a field K. If the sequence is lin-
early generated, the algorithm determines its minimal gen-
erator Λ(z) = zt + λt−1z

t−1 + · · · + λ0 after processing 2t
elements from the sequence. When the sequence is from an
integral domain D, such as Z or K[x], the Berlekamp/Massey
algorithm may introduce fractions, making data representa-
tion and modularization more difficult. In this section we
present a fraction-free version of the Berlekamp/Massey al-
gorithm, which never introduces an element in the field of
fractions of D, and in which all divisions are exact.

Recall the pseudo-division of polynomials [15, pp. 425–426,
also pp. 428–429] in the fundamental theorem of subresul-
tants [2]. Based on the equivalence between the Berlekamp/
Massey algorithm and the extended Euclidean algorithm on
polynomials x2t and a0x

2t−1 +a1x
2t−2 + · · · , Dornstetter [6]

interpreted the discrepancies ∆i as the coefficients in their
polynomial remainder sequence (PRS). By computing the
corresponding Berlekamp/Massey quantities of the subre-
sultant GCD algorithm, we obtain our fraction-free Berle-
kamp/Massey algorithm, which outputs an integral multiple
of the minimal generator, Λ̄(z) = r · Λ(z) with r ∈ D \ {0}.

Algorithm: FractionFreeBerlekampMassey

For a0, a1, . . . from an integral domain D, compute Λ̄i, an
integral multiple of the minimal generator of a0, a1, . . . , ai.

(1) Λ̄
(rev)
0 ← 1; B0 ← 0; L0 ← 0; ∆ ← 1; g ← 1; h ← 1

For i = 1, 2, . . . Do

(2) ∆i ← λ̄sai−1 + λ̄s−1ai−2 + · · · + λ̄0ai−s−1;
If ∆i = 0 then

Λ̄
(rev)
i ← Λ̄

(rev)
i−1 ; Bi ← z · Bi−1; Li ← Li−1;

(3) If ∆i 6= 0 and 2Li−1 < i then

δ←i−2Li−1; Λ̄
(rev)
i ←−∆·∆δ

i ·Λ̄(rev)
i−1 +∆δ+1

i ·z ·Bi−1;

Bi ← Λ̄
(rev)
i−1 ; Li ← i − Li−1; ∆ ← ∆i;

(4) If ∆i 6= 0 and 2Li−1 ≥ i then

Λ̄
(rev)
i ← Λ̄

(rev)
i−1 − (∆i/∆) · z · Bi−1; Bi ← z · Bi−1;

Li ← Li−1;

(5) If 2Li−1 = i then

Λ̄
(rev)
i ← (−1)δ+1/(g · hδ) · Λ̄(rev)

i ;
g ← ∆; h ← h1−δ · gδ;

End For;

3. SPARSE INTERPOLATION ON SHIFTED
BASES WITH EARLY TERMINATION

A given polynomial f(x1, . . . , xn) ∈ D[x1, . . . , xn] is repre-
sented in the standard power basis as:

f(x1, . . . , xn) =
t

X

i=1

ui · xe1,i

1 · · ·xen,i
n , (1)

with ui ∈ D \ {0}. For any s = (s1, . . . , sn) ∈ K
n
, f can be

represented in the s-shifted power basis:

f(x1, . . . , xn) =

t(s)
X

i=1

ci · (x1 + s1)
e1,i · · · (xn + sn)en,i , (2)

with ci ∈ K \ {0}, and t(s) the number of terms. Here,
t(s), ej,i, and ci are all dependent on s; the enumeration
in i depends on the term order being used, and ci can be
elements from an algebraic extension that allows the shift.
The representation in (1) is a special case of (2) when s =
(0, . . . , 0), and f can be represented in the power basis of
yj = xj + sj :

f(x1, . . . , xn) = f(y1 − s1, . . . , yn − sn)

=

t(s)
X

i=1

ci · (y1 − s1 + s1)
e1,i · · · (yn − sn + sn)en,i

=

t(s)
X

i=1

ci · ye1,i

1 y
e2,i

2 · · · yen,i
n . (3)

Denote the terms in (3) by Mi(s, y1, . . . , yn) = y
e1,i

1 · · · yen,i
n

and their evaluations at pj as mi(s) = Mi(s, p1, . . . , pn).
Now consider the following instance: p1 = 2, p2 = 4, then
mi(s) = 4 could be the value of either y2

1 or y2. For a given
shift s, we shall choose values pj such that the exponents
e1,i, . . . , en,i in each mi(s) can be uniquely determined, and
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define an auxiliary polynomial with the leading coefficient
λt(s) = 1:

Λ(z) =

t(s)
Y

i=1

(z − mi(s)) = λt(s)z
t(s) + · · · + λ0. (4)

Theorem 1 shows that when a shift s and an upper bound
σ, σ ≥ t(s), are given, the target polynomial can be inter-
polated in the s-shifted power basis after 2σ evaluations.

Theorem 1. Given are a shift s = (s1, . . . , sn) and a
polynomial f(x1, . . . , xn) ∈ K[x1, . . . , xn]. Let ai(s) = f(pi

1−
s1, . . . , pi

n − sn) for i ≥ 0 and assume that mi(s) are dis-
tinct. The sequence {ai(s)}i≥0 is linearly generated by Λ(z)
in (4). Furthermore, Λ(z) is the minimal generator.

Proof. This is an application of the Ben-Or/Tiwari al-
gorithm [1] in the power basis of yj = xj + sj .

Applying the early termination Ben-Or/Tiwari algorithm
[12] to the power basis of yj = xj + sj , then when pj are
distinct random values, without σ supplied as an input, the
target polynomial can be interpolated in the given s-shifted
basis with high probability. It requires 2t(s) + ζ black box
evaluations, and the threshold ζ ≥ 1 is given as input.

Algorithm: Early Termination Ben-Or/Tiwari

on a shifted basis

Input: ◮ f = f(x1, . . . , xn), a black box polynomial.
◮ s = (s1, . . . , sn), a shift in the power basis.
◮ ζ ≥ 1, the threshold for early termination.

Output: ◮ cj and Mj(s): f =
Pt(s)

j=1 cj · Mj(s) with high
probability, or an error message if the procedure
fails to complete.

(1) Pick distinct random elements: p1, . . . , pn, pj /∈ {0, 1}.
For i = 1, 2, . . .

(2) Perform the Berlekamp/Massey algorithm on
{f(pj

1 − s1, . . ., pj
n − sn)}1≤j≤i.

If ∆i = 0 and i > 2L happens ζ times in a row, then

(3) Break out of the loop;

(4) Set Λ(z) to the reverse of Λ
(rev)
i (z) that was com-

puted inside the algorithm;

(5) Compute all the roots of Λ(z) in the domain of pj .
If Λ(z) does not completely factor, or not all the roots are
distinct, then the early termination was false.

(6) Otherwise, recover the Mj(s) from mj(s) based on the
values of p1,. . . , pn. (For example, in a unique factor-
ization domain, one may choose p1,. . . , pn as distinct
primes, then each mj(s) can be uniquely determined).

Again, the term recovery might fail for unlucky pj .

(7) Obtain all cj from the mj(s)’s via solving a transposed
Vandermonde system.

4. FINDING SPARSE SHIFTS USING
EARLY TERMINATION

Based on the sparse interpolation algorithm for shifted bases
from the previous section, we present a new class of algo-
rithms for finding sparse shifts. The steps in a sparse algo-
rithm are sensitive to the sparsity of the target polynomial,
and we leave the shifts as variables in the procedures. Then
we find the solutions to the shift variables that minimize the
algorithm steps.

In the introduction, we have introduced the notions of a
sparsest shift in K and an absolutely sparsest shift in K. We

now generalize the problem formulation by constraining the
sparsest shifts to arbitrary sets. A sparsest shift within the
set S is a vector (s1, . . . , sn) ∈ S, where ∅ 6= S ⊆ K

n
, such

that with ci ∈ K \ {0},

f(x1, . . . , xn) =

t(s)
X

i=1

ci(x1 + s1)
ei,1 · · · (xn + sn)ei,n ,

the number of (shifted) terms t(s) is minimized. For the
problem of computing a sparsest shift we have S = K

n, and
for computing an absolutely sparsest shift we have S = K

n
.

In either case S need not be specified on input. A fourth
notion is that of a T -sparse shift (within S) which is a point
s = (s1, . . . , sn) ∈ S such that for number of shifted terms
we have t(s) ≤ T . Algorithms for computing all T -sparse
shifts take T as an additional input. Our main ideas easily
generalize to these variants. An application of restricting to
a set S is to leaving a selected variable unshifted by mak-
ing the corresponding component in S equal to 0. We will
require unshifted variables in our generalizations to simulta-
neously sparsely shifting a set of polynomials (see section 5).

We introduce n indeterminates z1, . . . , zn to serve as shift
variables. Let αi = f(yi

1−z1, . . . , yi
n−zn) for i ≥ 1 and apply

the fraction-free Berlekamp/Massey algorithm to {αi}i≥1, a
sequence of polynomials in K[z1, . . . , zn] [y1, . . . , yn]. The
discrepancies ∆i are polynomials in y1, . . . , yn over K[z1, . . . ,
zn]. The following lemma is based on the early termination
proof [12] in the standard power basis of yi.

Lemma 1. When a shift s = (s1, . . . , sn) ∈ K
n

is given,
the discrepancies ∆i evaluated at zj = sj are non-zero poly-
nomials in yi for all 1 ≤ i ≤ 2t(s), and zero polynomials for
all i ≥ 2t(s) + 1.

Thus, we seek sparsest shifts for f within S by finding θ =
(θ1, . . . , θn) ∈ S that minimize i such that ∆i(θ1,. . . ,θn,y1,
. . . ,yn) = 0. All our algorithms manipulate the discrep-
ancies ∆i ∈ K[z1, . . . , zn][y1, . . . , yn] from the fraction-free
Berlekamp/Massey algorithm. We present our algorithms in
three categories. The Symbolic Shift Algorithms of subsec-
tion 4.1 treat the ∆i as polynomials in K[z1, . . . , zn][y1, . . . ,
yn] and work in deterministic polynomial time for constant
n over any field over which algebraic systems can be solved.
The Single Projection Algorithms in subsection 4.2 evalu-
ate each yj at a value pj to increase efficiency. Finally, in
subsection 4.3, we present the Double Projection Algorithm
for polynomials f ∈ Q[x], wherein the ∆i are evaluated at
random y = p ∈ Z as well as random shifts z = s ∈ Z. This
yields a particularly efficient algorithm for rational polyno-
mials.

For simplicity some algorithms are described as finding sparse
shifts within certain algebraic extensions, yet they can all be
modified as being restricted to a non-empty subset S.

4.1 Symbolic Shift Algorithms
The deterministic symbolic algorithms treat both the basis
elements yi and the shift variables zi as indeterminates.

Algorithm: MultivariateSparsestShifts <symbolic>

Given a polynomial f(x1, . . . , xn) ∈ D[x1, . . . , xn], find all

the sparsest shifts s = (s1, . . . , sn) ∈ S ⊂ K
n

for f .

(1) [Initialize.] i ← 1.
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(2) [Compute ∆i.] Let αi = f(yi
1 − z1, . . . , y

i
n − zn), and

update ∆i by the fraction-free Berlekamp/Massey al-
gorithm on α1, . . . , αi.

(3) [Find sparsest shifts.] All solutions s = (s1, . . . , sn) ∈ S
to ∆i(s1, . . . , sn, y1, . . . , yn) = 0 are sparsest shifts for
f within S. The s can be found by solving a system of
polynomial equations in z1, . . . , zn. If no such s exists
then i ← i + 1 and go to step (2).

By lemma 1, a zero of ∆k stays a zero of ∆i for all i ≥ k;
those shifts that make ∆2T+1 the zero polynomial (in yj)
are all s such that t(s) ≤ T . For a given T , we find T -sparse
shifts in S by solving all s ∈ S such that ∆2T+1(s1, . . ., sn,
y1, . . ., yn) = 0.

We add that for multivariate polynomials, transcendental
shifts are possible, for instance x1 + x2 − 1 = (x1 + z1) +
(x2 − z1 − 1). In this case the variety of shift points is of
dimension higher than 0.

For a univariate f(x), a number of special “tricks” can be
employed. In a z-shifted basis y = x + z, the discrepancies
∆i ∈ K[z][y] from the fraction-free Berlekamp/Massey al-
gorithm are viewed as polynomials in y with coefficients in
K[z]. Every ∆i can be written as a product of its primitive
part ϕi(y) ∈ K[z][y] and content gi ∈ K[z] as

∆i = gi · ϕi(y). (5)

Since f(x) is a non-zero polynomial, ∆i 6= 0. As i is being
increased from 1, a sparsest shift θ appears at the first i
such that ∆i becomes a zero polynomial in y, that is, when
gi = 0. If a shift can be in K, the first time gi is a non-trivial
polynomial in K[z], the solutions to gi = 0 are the absolutely
sparsest shifts for f . Since all zeros of gi are zeros of gi+1,
we find the first non-trivial GCD of gi and gi+1 in K[z].

Algorithm: UnivariateSparsestShifts <symbolic>

Given a polynomial f(x) ∈ D[x], find all the absolutely
sparsest shifts for f . This algorithm requires a root finder
in K[z].

(1) [Initialize.] i ← 1, g0 ← 1.

(2) [Compute ∆i.] Let αi = f(yi − z). Update ∆i by the
fraction-free Berlekamp/Massey algorithm on the se-
quence α1, . . . , αi.

(3) [GCD of gi and gi−1.] Compute the content of gcd(∆i,
∆i−1), which is gcd(gi, gi−1). If it is a non-trivial poly-
nomial in K[z], all zeros of gcd(gi, gi−1) are absolutely
sparsest shifts; if not, i ← i + 1 and go to step (2).

Similarly, for a univariate polynomial, we solve gcd(g2T+1,
g2T+2)=0 to find all T -sparse shifts.

4.2 Single Projection Algorithms
By projecting variables yj to values pj , the efficiency of the
above algorithms can be improved substantially. There is a
trade-off: the output might include wrong results. In addi-
tion, the results become probabilistic when the pj are ran-
dom.

The next algorithm is based on the early termination.

Algorithm: MultivariateSparseShiftsEquation

<one projection>

Given a polynomial f(x1, . . . , xn) ∈ D[x1, . . . , xn] and a pos-
itive integer T , return a polynomial equation that all T -
sparse shifts have to satisfy.

(1) [Initialize.] Choose distinct random values p1, . . . , pn.

(2) [Compute ∆2T+1.] Let αi = f(pi
1−z1, . . . , pi

n−zn), com-
pute ∆2T+1 by the fraction-free Berlekamp/Massey al-
gorithm on α1, . . . , α2T+1.

(3) [Return ∆2T+1 = 0.] Every T -sparse shift s = (s1, . . . ,
sn) has to satisfy ∆2T+1(s1, . . . , sn) = 0, where ∆2T+1

is a polynomial in z1, . . . , zn.

If we restrict the set of shifts within a set S, the single
constraint ∆2T+1 = 0 may be sufficient to locate all T -sparse
shifts within S. Additional equations can be generated by
running the algorithm for different random pj ’s. We still
need to prove that eventually all false solutions, that is zeros
that do not yield a T -sparse shift, are eliminated. In the
univariate case we can give a completely proven algorithm.

In the univariate case, we can find either the sparsest shifts
or T -sparse shifts through solving a polynomial equation.
Consider ∆i = gi · ϕi(y) in (5) and distinct random values
p, q. By the Schwartz-Zippel lemma, with high probability
gcd(∆i(p), ∆i(q)) = gcd(gi · ϕi(p), gi · ϕi(q)) = gi and our
next algorithm follows.

Algorithm: UnivariateSparsestShifts

<one projection, two sequences>

Given a polynomial f(x) ∈ D[x], this algorithm returns all
the absolutely sparsest shifts for f with high probability.

(1) [Initialize.] i ← 1.

(2) [Compute ∆i] Let p, q be distinct random values and
αi = f(pi−z), βi = f(qi−z). Update ∆i(p) and ∆i(q)
by the fraction-free Berlekamp/Massey algorithm on
the sequences: α1, . . . , αi and β1, . . . , βi. As a re-
minder, αi, βi, ∆i(p), ∆i(q) are all polynomials in
z.

(3) [GCD of ∆i(p) and ∆i(q).] If gcd(∆i(p), ∆i(q)) is non-
trivial in K[z], the common roots of ∆i(p) and ∆i(q)
are absolutely sparsest shifts for f ; if gcd(∆i(p), ∆i(q))
is trivial in K[z], i ← i + 1 and go to step (2).

To further increase the probability of correctness, we may
project y to more distinct random values p1, . . . , pk, form a
sequence for each of the values, then look for the first i such
that gcd(∆i(p1), . . . , ∆i(pk)) is non-trivial in K[z].

We can reduce the projection to a single sequence by taking
GCD’s of subsequent elements in the sequence. Recall the
primitive part of ∆i in (5), in single projection, we need
to also make sure there is no non-trivial GCD of ϕi(p) and
ϕi+1(p) in K[z] for all p.

Theorem 2. Suppose that the absolutely sparsest shift of
f(x) has τ < deg(f) terms and assume that

`

deg(f)
j

´

6= 0
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for all 0 < j < deg(f) when computed as an element in
D. Then for Γ = GCD2τ+1≤i≤2 deg(f)(∆i(z, y)) (over the
quotient field of D) we have Γ = g(z)γ(y) were g(z) ∈ D[z]
and γ(y) ∈ D[y].

Proof. As stated above, if Γ(θ, y) = 0 for some θ in the
algebraic closure of the quotient field of D, denoted by D,
then f(y − θ) is τ -sparse in y. By assumption, there exists
such a shift, and therefore z−θ divides Γ. As in (5) we factor
Γ(z, y) = g(z)γ(z, y), where g ∈ D[z] and γ(z, y) ∈ D[z, y]
whose content in D[z] is 1. We claim that γ(z, y) ∈ D[y].
Let us suppose the contrary. Then there exists an element
σ in the algebraic closure of D(z) and transcendental over D

such that γ(z, σ) = 0. We thus have that ∆i(z, σ) = 0 for all
2τ +1 ≤ i ≤ 2 deg(f). Since the terms σi are all distinct, we
then get from the Ben-Or/Tiwari algorithm, using p = σ and
re-interpreting the coefficient field of f to be the algebraic
closure of D(z), that f(y − z) is τ -sparse. Let d = deg(f)
and cd be the leading coefficient of f . However, the term
cd

`

d
j

´

zd−j is unique in the coefficient of yj of f(y − z), so

f(y − z) is actually d-sparse over D[z].

The algorithm using a single projected sequence is as follows:

Algorithm: UnivariateSparsestShifts

<one projection, one sequence>

Given a polynomial f(x) ∈ D[x] and δ an upper bound on
deg(f), this algorithm finds all absolutely sparsest shifts for
f with high probability.

(1) [Initialize.] Choose a random.

(2) [Compute ∆1, . . . , ∆2δ] Let αi = f(pi − z), compute
∆1, . . . , ∆2δ by the fraction-free Berlekamp/Massey al-
gorithm on polynomial sequence α1, . . . , α2δ+1.

(3) [Minimize i so that gcd(∆i, . . . , ∆2δ) is non-trivial.] When-
ever gcd(∆2δ, . . . , ∆i−1) becomes trivial in K[z], g =
gcd(∆2δ, . . . , ∆i).

(4) [Solve g = 0.] With high probability, all solutions to
g = 0 are absolutely sparsest shifts for f .

In fact, we conjecture that instead of taking the GCD of
all discrepancies up to 2 deg(f), we need only look for the
GCD of a constant number of discrepancies after the abso-
lutely sparse case t(s) = τ is reached, that is, we compute
gcd(∆2τ+1, . . . , ∆2τ+ζ) for some constant ζ. For all exam-
ples we have tried, ζ = 1 is sufficient.

4.3 Two Projections: Finding the sparsest
shifts of a rational polynomial

When f ∈ Q[x], we can project the sequence {f(yi + z)}i≥1

both on a random y and random z from Z, and use the mul-
tiplicative structure of the integers to recover the sparsest
shift. Thus, finding the sparsest shift will be reduced to run-
ning the Berlekamp/Massey algorithm on a small number of
integer sequences (conjecturally only one). The existence of
a large prime factor in the GCD’s of two discrepancies will
reveal the sparsest shift. This dramatically improves the
efficiency. It also allows us to work completely with a black-
box representation for f , requiring only the value of f at
points in Z.

Finding factors of a black-box polynomials

We begin by demonstrating a general algorithm for finding
a linear factor in one variable of a black-box bivariate poly-
nomial. This will be applied to the discrepancy polynomials

Let Φ ∈ Q[z, y] be a black-box polynomial of degree t in y
and degree d in z. Suppose that

Φ(z, y) = (az − b)eΨ(z, y),

where a, b ∈ Z are relatively prime, e ≥ 1, and Ψ(z, y) ∈
Q[x, z] has no non-trivial factor in Z[z]. In this section we
give a Monte Carlo algorithm to find a and b with a small
constant number of evaluations of Φ.

A number m ∈ Q is said to be µ-smooth, for some µ > 0,
if all prime factors of both the numerator and denomina-
tor of m are less than µ. We say that a polynomial is
µ-primitive if it is a µ-smooth number times a primitive,
integer polynomial. For any Ψ =

P

ij Ψijy
izj ∈ Z[z, y],

let ‖Ψ‖ = max |Ψij |. The height of a rational number
α/β ∈ Q (where gcd(α, β) = 1) is H(α/β) = max{|α|, |β|}.
Define the denominator denom(Φ) of Φ ∈ Q[z, y] as the
LCM of the denominators of its coefficients. The content
of Φ is then defined as the usual content of the integer
polynomial denom(Ψ) · Ψ. The height of Φ ∈ Q[z, y] is
H(Φ) = max{| denom(Φ)|, ‖denom(Φ) ·Φ‖}. Note that this
is the height of Φ in the standard, unshifted, power basis.

To begin with we will insist that Φ is µ-primitive, and treat
the general case separately below.

Algorithm: FindLinearFactor

Input: ◮ Black box for Φ ∈ Q[z, y];
◮ Degree bound C ≥ degx Φ and D ≥ degz Φ;
◮ H > H(Φ);
◮ S > height of the sought linear factor;

Φ is assumed to be µ-primitive, where
µ = 30CD2(3+log(CD))+20D log ‖Φ‖;

Output: ◮ A candidate factor az − b of Φ, where a, b ∈ Z

are relatively prime;
or a report “No linear factor in z exists”;

(1) L0 = {0, . . . , 20DC}; L1 = {0, . . . , max{27, S4, µ}};
(2) Choose random γ1, γ2 ∈ L0, σ ∈ L1;

(3) Let q̄ = gcd(numer(Φ(γ1, σ)), numer(Φ(γ2, σ));

(4) Let q = q̄/m, with m the largest µ-smooth factor of q̄;

(5) If q = 1

(6) Then Return “No linear factor in z exists”;

(7) Else

(8) Find w and largest e ≥ 1 such that q = we

(9) If w < 2‖Φ‖2

(10) Then Return “Failure”;

(11) Else Return a, b ∈ Z such that
gcd(a, b) = 1, |a|, |b| ≤ S, and −b/a ≡ σ mod w;

Theorem 3. For any black-box Φ ∈ Z[z, y] meeting the
input criteria, FindLinearFactor works correctly as stated
with probability at least 1/5 on any invocation.
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Comments

• Obviously the algorithm can be run repeatedly until
a factor is found, or the user is satisfied that with
sufficiently high probability no linear factor exists.

• The probability of success is undoubtedly much higher
than is proven here.

• If w is too small and the algorithm reports “Failure”
in step (10), we get a useful modular relation between
a and b. Collecting these may allow us to construct
a, b without ever getting a really large w;

To prove Theorem 3, we require a number of lemmas. The
first simply says that the GCD of an evaluation of two rel-
atively prime integer polynomials is generally smooth.

Lemma 2. Let g, h ∈ Z[y] be relatively prime, primitive
polynomials of degree at most d and resultant r ∈ Z. For
a randomly, chosen γ ∈ {0, ..., 10d log r}, gcd(g(γ), h(γ)) is
(10d log r)-smooth with probability at least 9/10.

Proof. Since g, h are relatively prime, there exist u, v ∈
Z[y] such that u(y)g(y) + v(y)h(y) = r. Thus, if any prime
divides g(γ) and h(γ), that prime divides r as well. Sup-
pose then that p is a prime dividing r. Then there exists
up, vp, wp ∈ Z[y] such that wp is the GCD of g, h modulo p,
and 0 < deg wp < d, and

up(y)g(y) + vp(y)h(y) = wp(y) + pQp(y)

for some Qp ∈ Z[y]. If p divides g(γ) and h(γ), we have
wp(γ) ≡ 0 mod p. For p > 10d log r the number of γ such
that wp(γ) ≡ 0 mod p is less than d. We know r has at most
log r prime factors, so the probability that wp(γ) ≡ 0 mod p
for any prime p > 10d log r is at most 1/10.

We look now at the probability that a number in an arith-
metic progression is rough, i.e., has a large prime factor.
This theorem is an extension of an exercise of Knuth [14].
Let a, b ∈ Z be relatively prime. We say that an integer x
(0 ≤ x < M) is (

√
M ; a, b)-rough if the largest prime factor

of ax + b is greater than
√

M .

Lemma 3. Let a, b ∈ Z be relatively prime and
M ≥ max{a3, b2, 923}. The number of (

√
M ; a, b)-rough in-

tegers x with 0 ≤ x < M is at least M/4.

Proof. We assume a > 0. For a prime p >
√

aM , there
is a unique x0 such that 0 ≤ x0 < p and ax0 + b ≡ 0 mod p.
Thus, the set of all x such that ax+b ≡ 0 mod p is x0, x0 +
p, . . . , x0+kp, where x0+kp < M and x0+(k+1)p ≥ M . For
any p there are at least M/p−1 such numbers. Moreover, it
is easily shown that any number can appear in the sequence
for at most one prime. Summing all primes p such that√

aM < p < M , we count

X

√
aM<p<M

M

p
− 1 = M

X

√
aM<p<M

1

p
−

X

√
aM<p<M

1

≥ M

„

log log M − log log
√

aM − 1

2 log2
√

M
− 1

log2
√

aM

«

− π(M)

= M

„

log
3

2
− 1

2 log2 M
− 1

log2 M2/3

«

− M

−1.5 + log M

which is ≥ M/4 for M ≥ 13364. Here π(m) is the number
of primes less than or equal to m, and Theorem 2 of [19],
shows π(m) < m/(−1.5 + log(m)) for m > 5. We also use
Theorems 5 and 6 from [19] which show that

log log m + B − 1

2 log2 m
<

X

p≤m

1

p
< log log m + B +

1

log2 m

for m ≥ 286. We verify the theorem for all M ≥ 923.

Proof of Theorem 3. First, consider a primitive poly-
nomial Ψ ∈ Z[z, y] of degree c ≤ C in y and d ≤ D in z,
that has no non-trivial factor in z only. For any γ ∈ L0,
note that Ψ(γ, z) is also primitive of degree d.

We now show that for randomly chosen γ1, γ2 ∈ L0,
gcd(Ψ(γ1, z), Ψ(γ2, z)) = 1 with probability at least 9/10.
Let y1, y2 be two new indeterminates and consider the re-
sultant R(y1, y2) of Ψ(y1, z) and Ψ(y2, z) as polynomials in
Q(y1, y2)[z]. R is a primitive polynomial of degree 2dc ≤
2DC. R(γ1, γ2) 6= 0 with probability at least 9/10 by the
Schwartz-Zippel Lemma, and hence Ψ(γ1, z) and Ψ(γ2, z))
are relatively prime with probability ≥ 9/10.

Assume now that Ψ(γ1, z) and Ψ(γ2, z) are in fact relatively
prime. It is easily derived that ‖Ψ(γi, z)‖ ≤ (20DC)C · ‖Ψ‖.
Thus, the resultant r of Ψ(γ1, z) and Ψ(γ2, z) is at most
(2D)2D · (20DC)2DC · ‖Ψ‖2D. Simplifying this, we note that
log r ≤ 3DC(3 + log(DC)) + 2D log ‖Φ‖. By Lemma 2,
for a randomly chosen σ ∈ L1, gcd(Ψ(γ1, σ), Ψ(γ2, σ)) is
µ-smooth with probability at least 9/10.

Now consider the full case when Φ(z, y) = m · (az + b)e ·
Ψ(z, y), where m ∈ Q is µ-smooth, a, b ∈ Z are relatively
prime, and Ψ is primitive and has no factor purely in Z[z].
Then q̄ = m · (aσ − b) · gcd(Ψ(a1, σ), Ψ(a2, σ). From above
we see gcd(Ψ(a1, σ), Ψ(a2, σ)) is µ-smooth with probability
at least 81/100. Thus w is equal to the factor aσ−b which is
hopefully not µ-smooth. Both |σ| and |b| are less than ‖Φ‖.
By Lemma 3, (aσ+b) has a prime factor of size greater than
2 · |a| · |b| ≥ ‖Φ‖2, with probability at least 1/4, and in this
case we recover a, b as described in step (11). To conclude,
for any input, on any invocation the algorithm succeeds with
probability at least (81/100) · (1/4) ≥ 1/5.

Approximating the denominator and content

To complete the general algorithm, we must identify the
µ-primitive part of a black-box polynomial. The following
algorithm does this with 2 evaluations of the black-box.

Algorithm: DenominatorAndContent

Input: ◮ Black box for f ∈ Q[y];
◮ a bound D for the degree of f ;
◮ a bound H for the height of f ;

Output: ◮ a candidate ω ∈ Q such that content of ωf is
µ-smooth, where µ = 4D(D + 1) + 4D log H;

(1) Let L0 = {0, 2D};
(2) Choose a random α0 ∈ L0 and compute

ν0 = f(α0) ∈ Q; If ν0 = 0 the goto (2);

(3) Let L1 = {0, . . . , µ};
(4) Choose random α1 ∈ L1; compute ν1 = f(α1);

(5) Let δ̃ = lcm(denom(ν0), denom(ν1));
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(6) Let κ̃ = gcd(δ̃ν0, δ̃ν1);

(7) Return ω = δ̃/κ̃

Theorem 4. With probability at least 1/2 the output ω
of DenominatorAndContent(f, µ) is such that the content of
ωf is µ-smooth.

Proof. In Step (2) we simply find a small non-zero eval-
uation point for f . We expect that at at most 2 evaluations
of f are required.

In Step (5) we approximate the denominator δ of f . Sup-
pose f̄ = δf . For any prime p | δ we know that f̄ 6≡ 0 mod p
(since δ is relatively prime to the content κ of f). Let
d = deg f . For p > µ, the number of α1 ∈ L1 for which
f̄(α1) ≡ 0 mod p is at most d. Since d has at most log |d| <
logH(f) < log H prime factors, with probability at least
3/4 we choose an α1 ∈ L1 such that f̄(α1) 6≡ 0 mod p for

all primes p | d and p > µ. In this case the denominator δ̃ of
f(α1) is the denominator of f times a µ-smooth number.

In Step (6) we approximate the content κ of δf . Suppose

that δ̃f has content κ̃. We know κ̃ is κ times some µ-smooth
number, and δ̃f = δ̃κ̃f0, where f0 is primitive. Clearly κ | ν1.
For any prime p > µ, the number of α1 ∈ L1 for which
f0(α1) ≡ 0 mod p is at most d. Since numer(ν0) has at
most log |dd+1H(f)d| < log |DD+1HD| < µ/4 prime factors
greater than µ, with probability ≥ 3/4 we choose α1 ∈ L1

with f0(α1) 6≡ 0 mod p for all primes p | ν0, p > µ.

Once we have the ω = DenominatorAndContent(f), it is
easy to construct a black box for the µ-primitive part by
multiplying the result of an evaluation of f by ω.

Finding sparsest shifts of integer polynomials

Suppose we have a black box for a rational polynomial f ∈
Q[x], and a bound D ≥ d = deg f . We now describe the
complete algorithm for finding a sparsest shift of f .

We first approximate the content to within a µ-smooth mul-
tiple using DenominatorAndContent. We then build a new
black-box for the µ-primitive part of f (by dividing out the
content and denominator) and so assume from now on that
f is µ-primitive.

As discussed earlier, when we run the Berlekamp/Massey
algorithm on the sequence of polynomials {f(yi + z)}i≥1,
we are really just constructing the discrepancy polynomials
∆i(z, y) for i = 1, 2, . . . , t. When we choose a random p
and s and run Berlekamp/Massey on {f(pi + s)}i≥1 we are
evaluating the discrepancy polynomials at (s, p). I.e., the
Berlekamp/Massey algorithm gives us a black box for the
discrepancy polynomials. FindLinearFactor will be just
what we need to find the smallest t such that ∆2t−1(z, y) has
a factor in z alone (at least in the case when t ≤ (d + 1)/2).

Examining the discrepancy polynomials more closely, for
1 ≤ i ≤ t let αi(z, y) = f(yi − z) and

Āi =

0

B

B

B

B

@

α1 α2 · · · αi

α2 α3 . .
.

αi+1

... . .
.

. .
. ...

αi · · · · · · α2i−1

1

C

C

C

C

A

∈ Q[z, y]i×i, ∇i = det Āi

The (2i − 1)st discrepancy of the the sequence {αi}i≥1 is
∆2i−1 = ∇i/∇i−1 for i ≥ 1 (taking ∇0 = 1). The sparsest
shift of f occurs when there exists an s ∈ Q (or perhaps
an algebraic extension of Q) such that ∆2t−1(y, s) = 0, i.e.,
when ∆2t−1 has a factor in z alone.

When t ≤ (d+1)/2, the sparsest shift is rational and unique,
so we can apply the algorithm FindLinearFactor to the
numerators in the Berlekamp/Massey algorithm to find the
sparsest shift.

Theorem 5. Given a black-box for a µ-primitive polyno-
mial f ∈ Q[x] of degree d, which we assume has a t-sparse
shift s ∈ Q, where t ≤ (d + 1)/2, we can find s ∈ Q with an
expected 10t evaluations of the black-box.

Proof. It is straightforward to show the bounds

‖∇i‖ ≤ ii · 2id(1 + d)i(1 + di)i · ‖f‖d,

|b| ≤ 2t · t2t · ‖f‖t, |a| ≤ 2t · t2t · ‖f‖t · (2d)dt

Now use the algorithm FindLinearFactor on each discrep-
ancy in turn. By Theorem 3, at the (2t + 1)st discrepancy
we will find a, b such that az − b divides ∆t(z, y) with prob-
ability 1/5 on any invocation. The sparsest shift is then
a/ − b. By running the algorithm repeatedly, we expect to
find t and s with 5t invocations of FindLinearFactor, i.e.,
using 10t sequences.

All the notes following Theorem 3 apply here. In fact we
heuristically expect that only one invocation of the algo-
rithm will be needed to achieve success.

Once we find a sparsest shift, the polynomial can be recov-
ered by completing the Ben-Or/Tiwari algorithm steps with
the evaluations and generator already computed. Therefore,
we regard this algorithm as an improved sparse interpola-
tion algorithm: it discovers and interpolates with respect to
a possible sparsest basis during the interpolation procedure.

The “one projection, one sequence” algorithm for univariate
polynomials of Subsection 4.2 holds even more promise when
a second “shift” projection is used. That is, we proceed as
in FindLinearFactor, but instead of taking the GCD of the
discrepancies of two different sequences, we take the GCD’s
of the (i−1)st and ith discrepancies. As noted in Subsection
4.2, we conjecture this reveals the linear factor symbolically,
and if this is indeed the case, we might hope that only one
randomly shifted integer sequence is needed.

When the sparsest shift has t > (d − 1)/2, the factor of
the discrepancy polynomial containing the sparsest shifts as
roots may no longer be linear. In particular, in the algorithm
FindLinearFactor, Φ(z, y) = g(z)Ψ(z, y) for a nonlinear
g ∈ Z[z], and when we compute gcd(Φ(γ1, σ), Φ(γ2, σ)), we
see a factor of g(σ). While it is conjectured that g(γ) will
have large prime factors with reasonable probability, this
appears difficult to prove. Heuristically however, we can
interpolate a non-linear g much as we did a linear one. We
then factor g to obtain the sparsest shifts for f .

5. FUTURE DIRECTIONS
Our methods are generalizable in several ways. First, the
multivariate case can again be handled via randomization
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and by computing several Berlekamp/Massey discrepancy
sequences. For that, we need a lemma that n distinct lin-
ear combinations of the algebraic equations in the unknown
shifts do not enlarge the solution variety. Multivariate shifts
enable us to compute simultaneously sparsest shifts of a set
of polynomials. For example, the sparsest shift of

f1(x) + yf2(x) + y2f3(x) + · · · + ym−1fm(x) ∈ D[x, y]

within S = K×{0}, where fi ∈ D[x] and y is a fresh variable,
minimizes the sum of the number of terms in the shifted
polynomials fi(x + s). For a random value of y ∈ K the
algorithm minimizes the combined number of terms. A full
discussion will be provided in a future paper.

We may also consider different bases, such as Chebyshev and
Pochhammer bases. The determinants considered for early
termination and thus for symbolic evaluation are described
in [17]. Finally, one may consider so-called sparsifying linear
transforms. In the univariate case one searches for domain
elements a1, a2 such that the substitution x = a1y+a2 yields
a sparse polynomial. In the multivariate case one uses a lin-
ear transform x = Ay, where x and y are vectors of variables
and A is an invertible matrix with scalar entries [7]. Again
the problem reduces to finding roots of certain algebraic
equations whose efficient solution we plan to study.
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Correction made August 1, 2006 on page 102, Step (3): δ ← i −
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