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Factorization of an integer [V
(continued fraction, quadratic sieves, number field sieves)

Compute a solution to the congruence equation
X?=Y? (mod N)
via r relations on b basis primes

X7 X5 X7 = (1) (0597 - (p?)” (mod N)

Then N divides (X +Y)(X —Y), hence
GCD(X + Y, N) divides N



Relation computation
Step 1: Compute s > r relations on b basis primes

Vl<i<s: YZ-2 = p?’l -pgm . -pgi’b (mod N)

Step 2: select r relations X7 =Y, , ..., X, =Y, such that

17

ViI<j<bicjtcy,ijt +¢ ;=0 (mod 2)

One must compute non-zero solutions to the
sparse homogeneous linear system modulo 2

cipmod2 ... cjpmod 2]
co.1mod 2 ... ¢y p mod 2

]
1
-

Ty ... T 0] (mod 2)

copmod 2 ... cgpmod 2



LDDMLtR’s RSA-120 matrix modulo 2

Row nr. Columns with non-zero entries

1 01481 1355 3b42 5¢t6 461 edal f0e7 15d19 199e0 2¢317 33as
2 01 9b4 26 3214 7199 a146 bc7e 10087 175¢5 1953a 320b5 394

245811 01234689bcdf10121314 1617 18 19 1d 1e 1f 20 25 2
3624a 36473 36905 37727 395¢

There are 10 — 217 non-zero entries/column, with 252 222 columns
and 11 037 745 non-zero entries total; in the above format the ma-
trix occupies 48 Mbytes of disc space.



challenge-rsa-honor-roll@rsa.com

RSA-155
Factors:

1026395928297411057720541965739916759007165678080380668033419335217907113:

*

10660348838016845438209272203600128786792079585759892915222706082371930628!

Date:
Method:

Time:

August 22, 1999

the General Number Field Sieve,

with a polynomial selection method of Brian Murphy

and Peter L. Montgomery,

with lattice sieving (71%) and with line sieving (29%),

and with Peter L. Montgomery’s blocked Lanczos and

square root algorithms;

* Polynomial selection:

The polynomial selection took approximately 100 MIPS years,
equivalent to 0.40 CPU years on a 250 MHz processor.

* Sieving: 35.7 CPU-years in total,
124 722 179 relations were collected by eleven different sites

* Filtering the data and building the matrix took about a month



* Matrix: 224 hours on one CPU of the Cray-C916 at SARA, Amsterda
the matrix had 6 699 191 rows and 6 711 336 columns,
and weight 417 132 631 ( 62.27 nonzeros per row);
calendar time: ten days

* Square root: Four jobs assigned one dependency each were run

in parallel on separate 300 MHz R12000 processors
within a 24-processor SGI Origin 2000 at CWI.
One job found the factorisation after 39.4 CPU-hc

* The total calendar time for factoring RSA-155 was 5.2 months

(March 17 - August 22)

(excluding polynomial generation time)

We could reduce this to one month sieving time and

one month processing time if we had more sievers and

had more experience with matrix—-generation strategies.
Address: (of contact person)
Email: Herman.te.Riele@cwi.nl



Sparse interpolation in Chebyshev basis

Chebyshev basis:
To(x) =1, Ti(z)==z, Ti(z)=22T; 1(x)—T; 2(z)

Sparse polynomial in Chebyshev basis:
t

flx) =D ¢jTs(x), 0<8 <dp<--- <0
j=1

Interpolation problem: find #,0; € Z>p and ¢; € F



For some p € F, define an auxiliary polynomial A(z)

Key idea |Lakshman & Saunders 1992|: Let a;

e )\QT()(Z).

t—1
Vi Y Ajlajii+aj_i) = —(agri + ap_y).
=0

f(T5(p))

The A; are solutions to a symmetric Toeplitz+Hankel system

2ay)
2a1

2a1
a9 + a

2011

. G T Q49

2a¢ 1 at+ a2 ... a9+ ag |

Ao
Al

At—1

204
Ayl + ar—1

| agt—1 +ayp



How to make leading principal submatrices non-singular?

Wen-shin Lee [2001): Pick a random p € S C F
Gohberg-Koltracht [1989] algorithm finds Z, A ;

in O(t%) arithmetic steps

Kaltofen & Saunders [1991, 2001]: Precondition coefficient matrix:

(1 vy v3 ... Uy 1 0 0 ...0]
0 1 v ... v,_1 wy 1 0 0
00 1 --. = |[(Toeplitz + Hankel)- w3 wy 1 '
: L. 9 : x

0 ... I Wp Wp—1 -.. wy 1]

is for random v, w; Toeplitz+Hankel-like with generic rank profile.



Black box matrix concept

y € F" A-yeF"

A € F""" singular
[F an arbitrary, e.g.. finite field

Perform linear algebra operations, e.g., A~ b [Wiedemann 86] with

O(n) black box calls and
n%(logn)?)  arithmetic operations in F and
O(n) intermediate storage for field elements



Black box model is useful for dense, structured matrices

L ...

1

-1

1
n

|

" 2n—1

L1

In

(Hilbert matrix)

Savings may be in space, not time: O(1) vs. O(n?).



Idea for Wiedemann’s algorithm

A e F"*" T a (possibly finite) field
QbA()\) =cy+ -+ A" € F[A] minimum polynomial of A

Vu,veF"': Vj>0:
ulT AT A (A = 0

|

/ Tr 47 / Tr 47+1 / Ir pg+m,, _
- U Au+cl-u 4, Y+ Oy - U 4r y =0
aj aj+1 aj+m

|

{ag, a1, a9, ...} is generated by a linear recursion




Theorem [Wiedemann 1986]: For random u,v € F",
a linear generator for {ag, ay, as, ...} is one for {1, A, A%, ...}

Vi 20 caj+craj+ -+ cqgajqg="0
ﬂ (with high probability)
coAlv 4+ ey AT 4o+ chj+dv =0
H (with high probability)

C()Aj —|-61Aj+1 + - —|—CdAj+d =0

that is, with high probability ¢(\) divides ¢+ ¢\ +

g\



Algorithm homogeneous Wiedemann

Input: A € F"*" gingular
Output: w # 0 such that Aw =0

Step W1: Pick random u,v € F'"; b« Av;

for i — 0to 2n — 1 do a; — ulrA.
(Requires 2n black box calls.)

Step W2: Compute a linear recurrence generator for {a; },
Cg)\g + Cg_H)\ngl + -4 Cd)\d, ¢ >0,d<n,cy #0.

Step W3: w «— cpv +cp jAv+ -+ calAd_g
(With high probablhty w # 0 and Agﬂw =0.)

Compute first k& with A¥@ = 0: return w «— A" 1.
(Requlres < n black box calls.)



Step W2 detail

Coefficients cq, ..., ¢, can be found by computing a non-trivial
solution to the Toeplitz system
n — Qp—1 ... a;  a Cn
An+1  An az aj Cn—1
Ap+1 - Ca | 2| _ g
A2n—2 e Ap—1
| A2n—1 A2n—2 - - - An Gp—1] [ €0 _

or by the Berlekamp/Massey algorithm.
Cost: O(n(logn)?loglogn) arithmetic ops.



Flurry of recent results

Lambert [96], Teitelbaum [98], relationship of Wiedemann
Eberly & Kaltofen [97] and Lanczos approach

Villard [97] analysis of block Wiedemann

algorithm

Giesbrecht [97] and computation of diophantine
Mulders & Storjohann [99] solutions

Giesbrecht, Lobo & Saunders [98] certificates for inconsistency

Chen, Eberly, Kaltoten, butterfly network, sparse and
Saunders, Villard & Turner [2K]  diagonal preconditioners

Villard [2K] & Storjohann [01] characteristic polynomial

Kaltofen & Villard [2K] fast algorithm for determinant

of a dense integer matrix




Life after Strassen matrix multiplication: bit complexity

Linear system solving = = A71h where A € Z"*" and b € 7 -
With Strassen and Chinese remaindering [McClellan 1973]:

Step 1: For prime numbers pq, ..., p;. Do
Solve Azl = b (mod p;) where 2l e Z./(pj)

Step 2: Chinese remainder xm, e ,z[k] to AT = b (mod py---pz)

L

pL DR

Step 3: Recover denominators of x; by continued fractions of

Length of integers: k& = (n max{log || Al|, log ||b]| } )HO 1)

Bit complexity: 7> max{log ||A||, log HbH}HO(1>



With Hensel lifting [Moenck and Carter 1979, Dixon 1982]:

Step 1. For 7 =0,1,...,k and a prime p Do
Compute T = 20 4 palll 4. 4 il = 2 (mod p/™h

— b— Azli—1 pli—1 — A1l
.a. = .

pr’ p
1.b. 2l = A= Tpl] (mod p) reusing A~! mod p

_[#]

?

Step 2: Recover denominators of x; by continued fractions of ot
p

With classical matrix arithmetic:
Bit complexity of 1.a: n(nmax{log||Al|,||b]|}) oM +n?(log || Al})! o)

Total bit complexity: (n? max{log [|A]|, log [|b]|} )10



Diophantine solutions A(%aj[ )
by Giesbrecht, Mulders&Storjohann: A( [2]) — b, 22l ¢ 7n

Find several rational solutions.

—Can compute integral solutions of sparse linear systems.



Matrix determinant definition

Y11 --- Yn

det(Y') = det( le yz” ) = Z (Sign(a)Hyz-,g@),
i=1

oeSy

' Yn,1l --- Ynn_
where y; ; are from an arbitrary commutative ring.
and S), is the set of all permutations on {1,2,...,n}.

Interesting rings: Z, K|z, ..., x|, Klz|/(2")



Why the determinant complexity is important

Theorem |Giesbrecht 1992]

Suppose you have a Monte Carlo randomized algorithm on a
random _access machine that can compute the determinant of
an n X n matriz in D(n) arithmetic operations.

Then you have a Monte Carlo randomized algorithm on a ran-
dom access machine that can multiply two n X n matrices in
O(D(n)) arithmetic operations.

No proot is known for Las Vegas or deterministic algorithms.



Bit complexity of the determinant

With Chinese remaindering: (nlog [|A||)10) times matrix mul-
tiplication complexity.

Sign of the determinant [Clarkson 92]: n*t°) if matrix is il-
conditioned.

Using denominators of linear system solutions |Abbott, Bronstein,
Mulders 1999]: fast when large first invariant factor.

Using fast Smith form method n5t°W (log || A||)2> ) [Eberly,
Giesbrecht, Villard 2000]



Baby steps/giant steps algorithm [Kaltofen 1992 /2000]

Wiedemann randomly perturbs A and chooses random u and v; then
det(A]—A) = minimal recurrence polynomial of {a;};—0 1. 2,1

Detail of sequence a; = ul Aty computation

Let r = [v2n ] and s = [2n/r].
Substep 1. For y =1,2,...,r —1 Do il Ajfu;
Substep 2. Z «— A":
[O(n?) operations; integer length (y/n log || A|) o)

T
Substep 3. For k =1,2,...,s Do ulkl™ uTZk;
[O(n*?) operations; integer length (n log ||A|)
Substep 4. For y =0,1,...,r — 1 Do
For k =0,1,...,5 Do apyyj < <u[k],fu[j]>.

1+0(1)]



The state-of-the-art [Kaltofen & Villard 2001]

Theorem 1

The determinant of an integer matrixz can be computed in
O(n=0%(log || A|)H0W)Y bit operations.

Theorem 2

The determinant and adjoint of a matriz over a commutative
ring can be computed with O(n>5%)
tions and multiplications.

ring additions, subtrac-

Problem 1 (from my 3ECM 2000 talk)
Improve the bit complexity of algorithms for the determinant,

resultant, linear system solution, Toeplitz systems, over the
integers.



Coppersmith’s 1992 blocking

Use of the block vectors x € F"*F in place of u
z € TP in place of v

a; = x T Aty ¢ Fﬁxﬁ, 0<i<2n/6+ 2.
Find a vector polynomial cyA'+- - - +cg\? € FP[\], d = [n/3]:

d d
Vj=>0: Zaj+’ici = ZXTTAi+j Azc; =0 € UERNE

1={ 1=

1

BL_ X IB
" on z|n
N B
Then, analogously to before, with high probability
d d

B=> Alze;#£0, AT =" A'Azc; =0 F"
1=/ 1=V



Advantages of blocking

1. Parallel coarse- and fine-grain implementation

3 HE:B X |
QRN Ai+1 ! z

n I_j

The jth processor computes the jth column of the sequence of
(small) matrices.

2. Faster sequential running time:
multiple solutions [Coppersmith; Montgomery 1994];
1 + € matrix times vector ops [Kaltofen 1995];

determinant [Kaltofen & Villard 2000];
charpoly of sparse matrix [Villard & Storjohann 2001]

3. Better probability of success [Villard 1997



Analysis of blocking

All vector polynomials that generate {a; } form a module over F|)].

3 vectors of minimal degree determinant from a [F|\|-basis

A matrix canonical (Popov, Hermite) version of the basis defines
a unique minimal polynomial ¢y 4+ cj A + - - - + c AT € FIVXI)]

From (I —AB)™t =1+ B\+ B+ ...
x (I = AB)y(cq+ -+ + coA?) = R(A) € F[AJ7*V

we obtain a matrix Padé approximation ( “realization”)

x (1 = AB) "y = Y\ = R\)(cg+ -+ cpAd) ™



Computation of the matrix linear generator

Explicitly in Popov form by block Berlekamp/Massey algorithm
|Coppersmith 1994, Thomé 2001] or implicitly in a block Lanczos
version

Explicitly by a power Hermite-Padé approximation

[Beckermann & Labahn 1994]

By a block Toeplitz solver [Kaltofen 1995



Software
By Coppersmith, Kaltofen & Lobo, Montgomery, Brent, W .-s. Lee,...

The LinBox group |Canada: Calgary, UWO, Waterloo; France:
ENS Lyon, IMAG Grenoble, INRIA Sophia Antipolis; USA: Delaware,
NCSU, Washington Coll. MD]: A generic C++ library for black

box linear algebra, including integer problems

Open Problems

Black box methods: Compute the characteristic polynomial
Certity the minimal polynomial, rank

Structured methods: Supertast algorithms for resultant matrices
Subquadratic bit complexity for Toeplitz problems

Symbolic/numeric: How to interweave both methodologies?



