Efficient linear algebra algorithms in symbolic computation

Erich Kaltofen
North Carolina State University
www.kaltofen.net

Factorization of an integer N
(continued fraction, quadratic sieves, number field sieves)
Compute a solution to the congruence equation

$$
X^{2} \equiv Y^{2} \quad(\bmod N)
$$

via r relations on b basis primes

$$
X_{1}^{2} \cdot X_{2}^{2} \cdots X_{r}^{2} \equiv\left(p_{1}^{e_{1}}\right)^{2} \cdot\left(p_{2}^{e_{2}}\right)^{2} \cdots\left(p_{b}^{e_{b}}\right)^{2} \quad(\bmod N)
$$

Then N divides $(X+Y)(X-Y)$, hence $\operatorname{GCD}(X+Y, N)$ divides N

Relation computation
Step 1: Compute $s>r$ relations on b basis primes

$$
\forall 1 \leq i \leq s: Y_{i}^{2} \equiv p_{1}^{c_{i, 1}} \cdot p_{2}^{c_{i, 2}} \cdots p_{b}^{c_{i, b}} \quad(\bmod N)
$$

Step 2: select r relations $X_{1}=Y_{i_{1}}, \ldots, X_{r}=Y_{i_{r}}$ such that

$$
\forall 1 \leq j \leq b: c_{i_{1}, j}+c_{i_{2}, j}+\cdots+c_{i_{r}, j} \equiv 0 \quad(\bmod 2)
$$

One must compute non-zero solutions to the sparse homogeneous linear system modulo 2

LDDMLtR's RSA-120 matrix modulo 2

Row nr. Columns with non-zero entries
$10148113553 \mathrm{~b} 425 \mathrm{cf6}$ c461 eda1 f0e7 15 d 19199 e 02 c 31733 a
$2019 b 4$ f26 32147 f99 a146 bc7e 10087 175c5 1953a 320b5 394
! \quad :
24581101234689 bcdf10121314161718191d 1e 1f 20252
... 3624a 364733690537727395

There are 10-217 non-zero entries/column, with 252222 columns and 11037745 non-zero entries total; in the above format the matrix occupies 48 Mbytes of disc space.

```
challenge-rsa-honor-roll@rsa.com
```

RSA-155

Factors:

1026395928297411057720541965739916759007165678080380668033419335217907113 *

1066034883801684548209272203600128786792079585759892915222706082371930628
Date: August 22, 1999
Method: the General Number Field Sieve, with a polynomial selection method of Brian Murphy and Peter L. Montgomery, with lattice sieving (71%) and with line sieving (29%), and with Peter L. Montgomery's blocked Lanczos and square root algorithms;
Time: * Polynomial selection:
The polynomial selection took approximately 100 MIPS years, equivalent to 0.40 CPU years on a 250 MHz processor.

* Sieving: 35.7 CPU-years in total,
..
124722179 relations were collected by eleven different sites
* Filtering the data and building the matrix took about a month
* Matrix: 224 hours on one CPU of the Cray-C916 at SARA, Amsterda the matrix had 6699191 rows and 6711336 columns, and weight 417132631 (62.27 nonzeros per row); calendar time: ten days
* Square root: Four jobs assigned one dependency each were run in parallel on separate 300 MHz R12000 processors within a 24-processor SGI Origin 2000 at CWI.
One job found the factorisation after 39.4 CPU-ho
* The total calendar time for factoring RSA-155 was 5.2 months (March 17 - August 22) (excluding polynomial generation time)
We could reduce this to one month sieving time and one month processing time if we had more sievers and had more experience with matrix-generation strategies.
Address: (of contact person)
Email: Herman.te.Riele@cwi.nl

Sparse interpolation in Chebyshev basis
Chebyshev basis:

$$
T_{0}(x)=1, \quad T_{1}(x)=x, \quad T_{i}(x)=2 x T_{i-1}(x)-T_{i-2}(x)
$$

Sparse polynomial in Chebyshev basis:

$$
f(x)=\sum_{j=1}^{t} c_{j} T_{\delta_{j}}(x), \quad 0 \leq \delta_{1}<\delta_{2}<\cdots<\delta_{t}
$$

Interpolation problem: find $t, \delta_{j} \in \mathbb{Z}_{\geq 0}$ and $c_{j} \in \mathbb{F}$

For some $p \in \mathbb{F}$, define an auxiliary polynomial $\Lambda(z)$

$$
\begin{aligned}
\Lambda(z) & =\prod_{j=1}^{t}\left(z-T_{\delta_{i}}(p)\right) \\
& =T_{t}(z)+\lambda_{t-1} T_{t-1}(z)+\cdots+\lambda_{0} T_{0}(z)
\end{aligned}
$$

Key idea [Lakshman \& Saunders 1992]: Let $a_{i}=f\left(T_{i}(p)\right)$

$$
\forall i: \sum_{j=0}^{t-1} \lambda_{j}\left(a_{j+i}+a_{|j-i|}\right)=-\left(a_{t+i}+a_{|t-i|}\right)
$$

The λ_{j} are solutions to a symmetric Toeplitz+Hankel system

$$
\left[\begin{array}{cccc}
2 a_{0} & 2 a_{1} & \ldots & 2 a_{t-1} \\
2 a_{1} & a_{2}+a_{0} & \ldots & a_{t}+a_{t-2} \\
\vdots & \vdots & \ddots & \vdots \\
2 a_{t-1} & a_{t}+a_{t-2} & \ldots & a_{2 t-2}+a_{0}
\end{array}\right]\left[\begin{array}{c}
\lambda_{0} \\
\lambda_{1} \\
\vdots \\
\lambda_{t-1}
\end{array}\right]=-\left[\begin{array}{c}
2 a_{t} \\
a_{t+1}+a_{t-1} \\
\vdots \\
a_{2 t-1}+a_{1}
\end{array}\right] .
$$

How to make leading principal submatrices non-singular?

Wen-shin Lee [2001]: Pick a random $p \in S \subset \mathbb{F}$
Gohberg-Koltracht [1989] algorithm finds t, λ_{j} in $O\left(t^{2}\right)$ arithmetic steps

Kaltofen \& Saunders [1991, 2001]: Precondition coefficient matrix:

$$
\left[\begin{array}{ccccc}
1 & v_{2} & v_{3} & \ldots & v_{n} \\
0 & 1 & v_{2} & \ldots & v_{n-1} \\
0 & 0 & 1 & \ddots & \vdots \\
\vdots & & \ddots & \cdots & v_{2} \\
0 & \ldots & & & 1
\end{array}\right] \cdot(\text { Toeplitz + Hankel }) \cdot\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
w_{2} & 1 & 0 & & 0 \\
w_{3} & w_{2} & 1 & \ddots & \vdots \\
\vdots & & \ddots & \ddots & \\
w_{n} & w_{n-1} & \ldots & w_{2} & 1
\end{array}\right]
$$

is for random v_{j}, w_{j} Toeplitz+Hankel-like with generic rank profile.

Black box matrix concept

\mathbb{F} an arbitrary, e.g., finite field

Perform linear algebra operations, e.g., $A^{-1} b$ [Wiedemann 86] with

$$
\begin{aligned}
O(n) & \text { black box calls and } \\
n^{2}(\log n)^{O(1)} & \text { arithmetic operations in } \mathbb{F} \text { and } \\
O(n) & \text { intermediate storage for field elements }
\end{aligned}
$$

Black box model is useful for dense, structured matrices

$$
\left[\begin{array}{cccc}
1 & \ldots & & \cdots \\
& & \vdots & \\
n \\
& & \frac{1}{i+j-1} & \\
& & \vdots & \\
1 & \cdots & & \cdots
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\frac{1}{n}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
\vdots \\
\\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
\\
b_{n}
\end{array}\right]
$$

(Hilbert matrix)
Savings may be in space, not time: $O(1)$ vs. $O\left(n^{2}\right)$.

Idea for Wiedemann's algorithm
$A \in \mathbb{F}^{n \times n}, \mathbb{F}$ a (possibly finite) field
$\phi^{A}(\lambda)=c_{0}^{\prime}+\cdots+c_{m}^{\prime} \lambda^{m} \in \mathbb{F}[\lambda]$ minimum polynomial of A
$\forall u, v \in \mathbb{F}^{n}: \forall j \geq 0$:

$$
u^{\operatorname{Tr}} A^{j} \phi^{A}(A) v=0
$$

$$
\mathbb{I}
$$

$$
c_{0}^{\prime} \cdot \underbrace{u^{T r} A^{j} v}_{a_{j}}+c_{1}^{\prime} \cdot \underbrace{u^{T+1}}_{a_{j+1}^{T r} A^{j+1} v}+\cdots+c_{m}^{\prime} \cdot \underbrace{u^{T_{2}}}_{a_{j+m}^{T r} A^{j+m} v}=0
$$

$$
\Uparrow
$$

$\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$ is generated by a linear recursion

Theorem [Wiedemann 1986]: For random $u, v \in \mathbb{F}^{n}$, a linear generator for $\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$ is one for $\left\{I, A, A^{2}, \ldots\right\}$.

$$
\begin{gathered}
\forall j \geq 0: c_{0} a_{j}+c_{1} a_{j+1}+\cdots+c_{d} a_{j+d}=0 \\
\Downarrow(\text { with high probability }) \\
c_{0} A^{j} v+c_{1} A^{j+1} v+\cdots+c_{d} A^{j+d} v=0 \\
\Downarrow(\text { with high probability }) \\
c_{0} A^{j}+c_{1} A^{j+1}+\cdots+c_{d} A^{j+d}=0
\end{gathered}
$$

that is, with high probability $\phi^{A}(\lambda)$ divides $c_{0}+c_{1} \lambda+\cdots+c_{d} \lambda^{d}$

Algorithm homogeneous Wiedemann
Input: $A \in \mathbb{F}^{n \times n}$ singular
Output: $w \neq 0$ such that $A w=0$

Step W1: Pick random $u, v \in \mathbb{F}^{n} ; \quad b \leftarrow A v$;

$$
\text { for } i \leftarrow 0 \text { to } 2 n-1 \underset{\text { do } a_{i} \leftarrow u^{T r} A^{i} b .}{\text { (Requires } 2 n \text { black box calls.) }}
$$

Step W2: Compute a linear recurrence generator for $\left\{a_{i}\right\}$, $c_{\ell} \lambda^{\ell}+c_{\ell+1} \lambda^{\ell+1}+\cdots+c_{d} \lambda^{d}, \quad \ell \geq 0, d \leq n, c_{\ell} \neq 0$.

Step W3: $\widehat{w} \leftarrow c_{\ell} v+c_{\ell+1} A v+\cdots+c_{d} A^{d-\ell} v ;$ (With high probability $\widehat{w} \neq 0$ and $A^{\ell+1} \widehat{w}=0$.) Compute first k with $A^{k} \widehat{w}=0$; return $w \leftarrow A^{k-1} \widehat{w}$. (Requires $\leq n$ black box calls.)

Step W2 detail
Coefficients c_{0}, \ldots, c_{n} can be found by computing a non-trivial solution to the Toeplitz system

$$
\left[\begin{array}{cccccc}
a_{n} & a_{n-1} & \cdots & & a_{1} & a_{0} \\
a_{n+1} & a_{n} & & & a_{2} & a_{1} \\
\vdots & a_{n+1} & \ddots & & \vdots & a_{2} \\
& \vdots & & & & \vdots \\
a_{2 n-2} & & & & \ddots & a_{n-1} \\
a_{2 n-1} & a_{2 n-2} & \cdots & & a_{n} & a_{n-1}
\end{array}\right] \cdot\left[\begin{array}{c}
c_{n} \\
c_{n-1} \\
c_{n-2} \\
\vdots \\
\\
c_{0}
\end{array}\right]=\mathbf{0}
$$

or by the Berlekamp/Massey algorithm.
Cost: $O\left(n(\log n)^{2} \log \log n\right)$ arithmetic ops.

Flurry of recent results

Lambert [96], Teitelbaum [98], Eberly \& Kaltofen [97]	relationship of Wiedemann and Lanczos approach
Villard [97]	analysis of block Wiedemann algorithm
Giesbrecht [97] and Mulders \& Storjohann [99]	computation of diophantine solutions
Giesbrecht, Lobo \& Saunders [98]	certificates for inconsistency
Chen, Eberly, Kaltofen, Saunders, Villard \& Turner [2K]	butterfly network, sparse and diagonal preconditioners
Villard [2K] \& Storjohann [01]	characteristic polynomial
Kaltofen \& Villard [2K]	fast algorithm for determinant of a dense integer matrix

Life after Strassen matrix multiplication: bit complexity
Linear system solving $x=A^{-1} b$ where $A \in \mathbb{Z}^{n \times n}$ and $b \in \mathbb{Z}^{n}$:

With Strassen and Chinese remaindering [McClellan 1973]:

Step 1: For prime numbers p_{1}, \ldots, p_{k} Do

$$
\text { Solve } A x^{[j]} \equiv b\left(\bmod p_{j}\right) \text { where } x^{[j]} \in \mathbb{Z} /\left(p_{j}\right)
$$

Step 2: Chinese remainder $x^{[1]}, \ldots, x^{[k]}$ to $A \bar{x} \equiv b\left(\bmod p_{1} \cdots p_{k}\right)$
Step 3: Recover denominators of x_{i} by continued fractions of $\frac{\bar{x}_{i}}{p_{1} \cdots p_{k}}$.
Length of integers: $k=(n \max \{\log \|A\|, \log \|b\|\})^{1+o(1)}$
Bit complexity: $\quad n^{3.38} \max \{\log \|A\|, \log \|b\|\}^{1+o(1)}$

With Hensel lifting [Moenck and Carter 1979, Dixon 1982]:
Step 1: For $j=0,1, \ldots, k$ and a prime p Do

$$
\begin{aligned}
& \text { Compute } \bar{x}^{[j]}=x^{[0]}+p x^{[1]}+\cdots+p^{j} x^{[j]} \equiv x\left(\bmod p^{j+1}\right) \\
& \text { 1.a. } \widehat{b}^{[j]}=\frac{b-A \bar{x}^{[j-1]}}{p^{j}}=\frac{\widehat{b}^{[j-1]}-A x^{[j-1]}}{p} \\
& \text { 1.b. } x^{[j]} \equiv A^{-1} \widehat{b}^{[j]}(\bmod p) \text { reusing } A^{-1} \bmod p
\end{aligned}
$$

Step 2: Recover denominators of x_{i} by continued fractions of $\frac{\bar{x}_{i}^{[k]}}{p^{k}}$.
With classical matrix arithmetic:
Bit complexity of 1.a: $n(n \max \{\log \|A\|,\|b\|\})^{1+o(1)}+n^{2}(\log \|A\|)^{1+o(1)}$
Total bit complexity: $\left(n^{3} \max \{\log \|A\|, \log \|b\|\}\right)^{1+o(1)}$

Diophantine solutions

$$
\begin{aligned}
& A\left(\frac{1}{2} x^{[1]}\right)=b, \quad x^{[1]} \in \mathbb{Z}^{n} \\
& A\left(\frac{1}{3} x^{[2]}\right)=b, \quad x^{[2]} \in \mathbb{Z}^{n} \\
& \operatorname{gcd}(2,3)=1=2 \cdot 2-1 \cdot 3 \\
& A\left(2 x^{[1]}-x^{[2]}\right)=4 b-3 b=b
\end{aligned}
$$

$$
\text { by Giesbrecht, Mulders\&Storjohann: } A\left(\frac{1}{3} x^{[2]}\right)=b, \quad x^{[2]} \in \mathbb{Z}^{n}
$$ Find several rational solutions.

\Longrightarrow Can compute integral solutions of sparse linear systems.

Matrix determinant definition

$$
\operatorname{det}(Y)=\operatorname{det}\left(\left[\begin{array}{ccc}
y_{1,1} & \cdots & y_{1, n} \\
y_{2,1} & \cdots & y_{2, n} \\
\vdots & & \vdots \\
y_{n, 1} & \cdots & y_{n, n}
\end{array}\right]\right)=\sum_{\sigma \in S_{n}}\left(\operatorname{sign}(\sigma) \prod_{i=1}^{n} y_{i, \sigma(i)}\right),
$$

where $y_{i, j}$ are from an arbitrary commutative ring, and S_{n} is the set of all permutations on $\{1,2, \ldots, n\}$.

Interesting rings: $\mathbb{Z}, \mathbb{K}\left[x_{1}, \ldots, x_{n}\right], \mathbb{K}[x] /\left(x^{n}\right)$

Why the determinant complexity is important
Theorem [Giesbrecht 1992]
Suppose you have a Monte Carlo randomized algorithm on a random access machine that can compute the determinant of an $n \times n$ matrix in $D(n)$ arithmetic operations.

Then you have a Monte Carlo randomized algorithm on a random access machine that can multiply two $n \times n$ matrices in $O(D(n))$ arithmetic operations.

No proof is known for Las Vegas or deterministic algorithms.

Bit complexity of the determinant
With Chinese remaindering: $(n \log \|A\|)^{1+o(1)}$ times matrix multiplication complexity.

Sign of the determinant [Clarkson 92]: $n^{4+o(1)}$ if matrix is illconditioned.

Using denominators of linear system solutions [Abbott, Bronstein, Mulders 1999]: fast when large first invariant factor.

Using fast Smith form method $n^{3.5+o(1)}(\log \|A\|)^{2.5+o(1)}$ [Eberly, Giesbrecht, Villard 2000]

Baby steps/giant steps algorithm [Kaltofen 1992/2000]
Wiedemann randomly perturbs A and chooses random u and v; then $\operatorname{det}(\lambda I-A)=$ minimal recurrence polynomial of $\left\{a_{i}\right\}_{i=0,1, \ldots 2 n-1}$.

Detail of sequence $a_{i}=u^{T} A^{i} v$ computation
Let $r=\lceil\sqrt{2 n}\rceil$ and $s=\lceil 2 n / r\rceil$.
Substep 1. For $j=1,2, \ldots, r-1$ Do $v^{[j]} \leftarrow A^{j} v$;
Substep 2. $Z \leftarrow A^{r}$;
$\left[O\left(n^{3}\right)\right.$ operations; integer length $\left.(\sqrt{n} \log \|A\|)^{1+o(1)}\right]$
Substep 3. For $k=1,2, \ldots, s$ Do $u^{[k]^{T}} \leftarrow u^{T} Z^{k}$;
$\left[O\left(n^{2.5}\right)\right.$ operations; integer length $\left.(n \log \|A\|)^{1+o(1)}\right]$
Substep 4. For $j=0,1, \ldots, r-1$ Do For $k=0,1, \ldots, s$ Do $a_{k r+j} \leftarrow\left\langle u^{[k]}, v^{[j]}\right\rangle$.

The state-of-the-art [Kaltofen \& Villard 2001]

Theorem 1

The determinant of an integer matrix can be computed in $O\left(n^{2.698}(\log \|A\|)^{1+o(1)}\right)$ bit operations.

Theorem 2

The determinant and adjoint of a matrix over a commutative ring can be computed with $O\left(n^{2.698}\right)$ ring additions, subtractions and multiplications.

Problem 1 (from my 3ECM 2000 talk)
Improve the bit complexity of algorithms for the determinant, resultant, linear system solution, Toeplitz systems, over the integers.

Coppersmith's 1992 blocking
Use of the block vectors $\mathbf{x} \in \mathbb{F}^{n \times \beta}$ in place of u

$$
\mathrm{z} \in \mathbb{F}^{n \times \beta} \text { in place of } v
$$

$$
\mathbf{a}_{i}=\mathbf{x}^{\operatorname{Tr}} A^{i+1} \mathbf{z} \in \mathbb{F}^{\beta \times \beta}, \quad 0 \leq i<2 n / \beta+2
$$

Find a vector polynomial $c_{\ell} \lambda^{\ell}+\cdots+c_{d} \lambda^{d} \in \mathbb{F}^{\beta}[\lambda], d=\lceil n / \beta\rceil$:

$$
\forall j \geq 0: \quad \sum_{i=\ell}^{d} \mathbf{a}_{j+i} c_{i}=\sum_{i=\ell}^{d} \mathbf{x}^{\operatorname{Tr}} A^{i+j} A \mathbf{z} c_{i}=\mathbf{0} \in \mathbb{F}^{\beta \times \beta}
$$

Then, analogously to before, with high probability

$$
\widehat{w}=\sum_{i=\ell}^{d} A^{i-\ell} \mathbf{z} c_{i} \neq \mathbf{0}, \quad A^{\ell+1} \widehat{w}=\sum_{i=\ell}^{d} A^{i} A \mathbf{z} c_{i}=\mathbf{0} \in \mathbb{F}^{n}
$$

Advantages of blocking

1. Parallel coarse- and fine-grain implementation

The $j^{\text {th }}$ processor computes the $j^{\text {th }}$ column of the sequence of (small) matrices.
2. Faster sequential running time: multiple solutions [Coppersmith; Montgomery 1994]; $1+\epsilon$ matrix times vector ops [Kaltofen 1995]; determinant [Kaltofen \& Villard 2000]; charpoly of sparse matrix [Villard \& Storjohann 2001]
3. Better probability of success [Villard 1997]

Analysis of blocking
All vector polynomials that generate $\left\{\mathbf{a}_{i}\right\}$ form a module over $\mathbb{F}[\lambda]$.
β vectors of minimal degree determinant from a $\mathbb{F}[\lambda]$-basis

A matrix canonical (Popov, Hermite) version of the basis defines a unique minimal polynomial $\mathbf{c}_{0}+\mathbf{c}_{1} \lambda+\cdots+\mathbf{c}_{d} \lambda^{d} \in \mathbb{F} \beta \times \beta[\lambda]$

From $(I-\lambda B)^{-1}=I+B \lambda+B^{2} \lambda^{2}+\cdots$

$$
\mathbf{x}^{\operatorname{Tr}}(I-\lambda B)^{-1} \mathbf{y}\left(\mathbf{c}_{d}+\cdots+\mathbf{c}_{0} \lambda^{d}\right)=R(\lambda) \in \mathbb{F}[\lambda]^{\beta \times \beta}
$$

we obtain a matrix Padé approximation ("realization")

$$
\mathbf{x}^{\operatorname{Tr}}(I-\lambda B)^{-1} \mathbf{y}=\sum_{i} \mathbf{a}_{i} \lambda^{i}=R(\lambda)\left(\mathbf{c}_{d}+\cdots+\mathbf{c}_{0} \lambda^{d}\right)^{-1}
$$

Computation of the matrix linear generator
Explicitly in Popov form by block Berlekamp/Massey algorithm [Coppersmith 1994, Thomé 2001] or implicitly in a block Lanczos version

Explicitly by a power Hermite-Padé approximation
[Beckermann \& Labahn 1994]

By a block Toeplitz solver [Kaltofen 1995]

By Coppersmith, Kaltofen \& Lobo, Montgomery, Brent, W.-s. Lee,...
The LinBox group [Canada: Calgary, UWO, Waterloo; France: ENS Lyon, IMAG Grenoble, INRIA Sophia Antipolis; USA: Delaware, NCSU, Washington Coll. MD]: A generic C++ library for black box linear algebra, including integer problems

Open Problems
Black box methods: Compute the characteristic polynomial Certify the minimal polynomial, rank

Structured methods: Superfast algorithms for resultant matrices Subquadratic bit complexity for Toeplitz problems

Symbolic/numeric: How to interweave both methodologies?

