
Algorithms for sparse and black box matrices

over finite fields

Erich Kaltofen
North Carolina State University

www.kaltofen.net

Factorization of an integer N
(continued fraction, quadratic sieves, number field sieves)

Compute a solution to the congruence equation

X2 ≡ Y 2 (mod N)

via r relations on b basis primes

X2
1 ·X

2
2 · · ·X

2
r ≡ (p

e1
1)2 · (pe2

2)2 · · · (p
eb
b)2 (mod N)

Then N divides (X + Y)(X − Y), hence

GCD(X + Y, N) divides N

Relation computation
Step 1: Compute s > r relations on b basis primes

∀1 ≤ i ≤ s : Y 2
i ≡ p

ci,1
1 · p

ci,2
2 · · · p

ci,b
b (mod N)

Step 2: select r relations X1 = Yi1, . . . , Xr = Yir such that

∀1 ≤ j ≤ b : ci1,j + ci2,j + · · · + cir,j ≡ 0 (mod 2)

One must compute non-zero solutions to the
sparse homogeneous linear system modulo 2

[
x1 . . . xs

]



c1,1 mod 2 . . . c1,b mod 2
c2,1 mod 2 . . . c2,b mod 2

... ...
c2,1 mod 2 . . . c2,b mod 2


 ≡

[
0 . . . 0

]
(mod 2)

LDDMLtR’s RSA-120 matrix modulo 2

Row nr. Columns with non-zero entries

1 0 1 481 1355 3b42 5cf6 c461 eda1 f0e7 15d19 199e0 2c317 33a50
2 0 1 9b4 f26 3214 7f99 a146 bc7e 10087 175c5 1953a 320b5 39425

... ...

245 811 0 1 2 3 4 6 8 9 b c d f 10 12 13 14 16 17 18 19 1d 1e 1f 20 25 26
. . . 3624a 36473 36905 37727 395eb

There are 10−217 non-zero entries/column, with 252 222 columns
and 11 037 745 non-zero entries total; in the above format the ma-
trix occupies 48 Mbytes of disc space.

challenge-rsa-honor-roll@rsa.com

RSA-155

Factors:

102639592829741105772054196573991675900716567808038066803341933521790711307779

*

106603488380168454820927220360012878679207958575989291522270608237193062808643

Date: August 22, 1999

Method: the General Number Field Sieve,

with a polynomial selection method of Brian Murphy

and Peter L. Montgomery,

with lattice sieving (71%) and with line sieving (29%),

and with Peter L. Montgomery’s blocked Lanczos and

square root algorithms;

Time: * Polynomial selection:

The polynomial selection took approximately 100 MIPS years,

equivalent to 0.40 CPU years on a 250 MHz processor.

...

* Sieving: 35.7 CPU-years in total,

...

124 722 179 relations were collected by eleven different sites,

...

* Filtering the data and building the matrix took about a month

* Matrix: 224 hours on one CPU of the Cray-C916 at SARA, Amsterdam;

the matrix had 6 699 191 rows and 6 711 336 columns,

and weight 417 132 631 (62.27 nonzeros per row);

calendar time: ten days

* Square root: Four jobs assigned one dependency each were run

in parallel on separate 300 MHz R12000 processors

within a 24-processor SGI Origin 2000 at CWI.

One job found the factorisation after 39.4 CPU-hours,

...

* The total calendar time for factoring RSA-155 was 5.2 months

(March 17 - August 22)

(excluding polynomial generation time)

We could reduce this to one month sieving time and

one month processing time if we had more sievers and

had more experience with matrix-generation strategies.

Address: (of contact person)

Email: Herman.te.Riele@cwi.nl

Factorization of polynomial f over finite field Fp

(Berlekamp 1967 algorithm)

Note that since ap ≡ a (mod p) for all a ∈ Fp we have

xp − x ≡ x · (x− 1) · (x− 2) · · · (x− p + 1) (mod p)

Compute a polynomial solution to the congruence equation

w(x)p ≡ w(x) (mod f (x))

Then f divides w · (w − 1) · (w − 2) · · · (w − p + 1), hence

GCD(w(x)− a, f (x)) divides f (x) for some a ∈ Fp

Solving wp ≡ w (mod f) by linear algebra

For w(x) ∈ Fp[x], deg(w) < n = deg(f) :

w(x)p = w(xp) ≡ w(x) (mod f (x))

m

−−−−−−−−−−−→
w(xp) mod f (x) = [w0 . . . wn−1]︸ ︷︷ ︸

−→w

·




...
−−−−−−−−→
xip mod f (x)

...




0≤i<n︸ ︷︷ ︸
Q

(Petr’s 1937 matrix)

= −→w

Black box matrix concept

y ∈ F
n

−−−−−→
A · y ∈ F

n

−−−−−−−→

A ∈ F
n×n singular

F an arbitrary, e.g., finite field

Perform linear algebra operations, e.g., A−1b [Wiedemann 86] with

O(n) black box calls and

n2(log n)O(1) arithmetic operations in F and
O(n) intermediate storage for field elements

Black box model is useful for dense, structured matrices




1 1
n

...
1

i+j−1
...

1
n 1

2n−1







x1

...

xn




=




b1

...

bn




(Hilbert matrix)

Savings is in space, not time: O(1) vs. O(n2).

Idea for Wiedemann’s algorithm

A ∈ F
n×n, F a (possibly finite) field

φA(λ) = c′0 + · · ·+ c′mλm ∈ F[λ] minimum polynomial of A

∀u, v ∈ F
n : ∀ j ≥ 0 :

uTrAjφA(A)v = 0~w�
c′0 · u

TrAjv︸ ︷︷ ︸
aj

+c′1 · u
TrAj+1v︸ ︷︷ ︸
aj+1

+ · · · + c′m · u
TrAj+mv︸ ︷︷ ︸
aj+m

= 0

~w�
{a0, a1, a2, . . .} is generated by a linear recursion

Theorem [Wiedemann 1986]: For random u, v ∈ F
n,

a linear generator for {a0, a1, a2, . . .} is one for {I, A, A2, . . .}.

∀ j ≥ 0 : c0aj + c1aj+1 + · · · + cdaj+d = 0
ww� (with high probability)

c0A
jv + c1A

j+1v + · · · + cdA
j+dv = 0

ww� (with high probability)

c0A
j + c1A

j+1 + · · · + cdA
j+d = 0

that is, with high probability φA(λ) divides c0 +c1λ+ · · ·+cdλ
d

Algorithm homogeneous Wiedemann

Input: A ∈ F
n×n singular

Output: w 6= 0 such that Aw = 0

Step W1: Pick random u, v ∈ F
n; b← Av;

for i← 0 to 2n− 1 do ai← uTrAib.
(Requires 2n black box calls.)

Step W2: Compute a linear recurrence generator for {ai},
c`λ

` + c`+1λ
`+1 + · · · + cdλ

d, ` ≥ 0, d ≤ n, c` 6= 0.

Step W3: ŵ ← c`v + c`+1Av + · · · + cdA
d−`v;

(With high probability ŵ 6= 0 and A`+1ŵ = 0.)

Compute first k with Akŵ = 0; return w ← Ak−1ŵ.
(Requires ≤ n black box calls.)

Step W2 detail

Coefficients c0, . . . , cn can be found by computing a non-trivial
solution to the Toeplitz system



an an−1 . . . a1 a0
an+1 an a2 a1

... an+1
. a2

... ...
a2n−2

. . . an−1
a2n−1 a2n−2 . . . an an−1



·




cn
cn−1
cn−2

...

c0




= 0

or by the Berlekamp/Massey algorithm.

Cost: O(n(log n)2loglog n) arithmetic ops.

Flurry of recent results

Lambert [96], Teitelbaum [98], relationship of Wiedemann
Eberly & Kaltofen [97] and Lanczos approach

Villard [97] analysis of block Wiedemann
algorithm

Giesbrecht [97] and computation of diophantine

Mulders & Storjohann [99] solutions
Giesbrecht, Lobo & Saunders [98] certificates for inconsistency
Chen, Eberly, Kaltofen, butterfly network, sparse and

Saunders, Villard & Turner [2K] diagonal preconditioners
Villard [2K] & Storjohann [01] characteristic polynomial
Kaltofen & Villard [2K] fast algorithm for determinant

of a dense integer matrix

LinSolve0: Given blackbox A, compute w 6= 0 such that
Aw = 0.

NonSingular≤LinSolve0: For Ax = b solve
[
A | b

]
w = 0

and compute x =
1

wn+1




w1
. . .
wn


 .

Harder (?) problem
LinSolve1: Given blackbox A (possibly singular) and b, com-
pute x such that Ax = b.

Random sampling in the nullspace is equivalent to LinSolve1:
select a random vector y and solve Ax = b for b = Ay.

LinSolve1 via preconditioning

Suppose the minpoly of A is 1 · λ + · · · + cmλm

(the canonical form of A has “no nil-potent blocks.”)

If Ax = b is consistent then b = A · y

hence 1 · b + · · · + cmAm−1b = 1 · Ay + · · · + cmAmy = 0

so b = A · (−c2b− · · · − cmAm−2b︸ ︷︷ ︸
x

).

In [Chen et al. 2000] it is shown that Wiedemann’s random sparse

matrix multipliers give Ã the above property:

Ã = LAR where L, R are certain sparse 0-1 matrices

Note: L, R have O(n(log n)2) non-zero entries.

Diophantine solutions
by Giesbrecht:
Find several rational solu-
tions.

A(1
2x

[1]) = b, x[1] ∈ Z
n

A(1
3x

[2]) = b, x[2] ∈ Z
n

gcd(2, 3) = 1 = 2 · 2− 1 · 3

A(2x[1] − x[2]) = 4b− 3b = b

Hensel lifting [Moenck and Carter 1979, Dixon 1982]:
1: For j = 0, 1, . . . , k and a prime p Do

Compute x̄[j] = x[0] + px[1] + · · · + pjx[j] ≡ x (mod pj+1)

1.a. b[j] =
b− Ax̄[j−1]

pj
=

b[j−1] − Ax[j−1]

p

1.b. Solve Ax[j] ≡ b[j] (mod p) reusing the minpoly of A mod p

2: Recover denominators of xi by continued fractions of x̄
[k]
i /pk.

Original idea for Lanczos’s algorithm

Assumption: A ∈ F
n×n is non-singular and symmetric. Then

〈u, v〉A = uTrAv

is a pseudo-inner product, i.e., 〈v, v〉A 6= 0 for v 6= 0 is not guar-
anteed unless A is positive definite.

Orthogonalize w.r.t. 〈·, ·〉A the Krylov space b, Ab, A2b, . . .

w0 = b, w1 = Aw0−α1w0, wi+2 = Awi+1−αi+1wi+1− βiwi

where αi+1 =
〈Awi+1,wi+1〉A
〈wi+1,wi+1〉A

and βi =
〈Awi+1,wi〉A
〈wi,wi〉A

Then, A−1b =
∑m−1

i=0
〈wi,A

−1b〉A
〈wi,wi〉A

wi =
∑m−1

i=0
bTrwi
〈wi,wi〉A

wi.

Lambert’s 1996 interpretation

Lanczos = Wiedemann with projections u = v = b
+ evaluating polynomials at A, b

as they are updated in Berlekamp/Massey.

Since Berlekamp/Massey = Euclid [Dornstetter] we may state
Lanczos implicitly performs Euclid [Gutknecht].

If polynomial remainders drop in degree, one needs to perform
“lookahead.” (May not be space efficient.)

If the degree of the minpoly is low, Lanczos “terminates early.”

Analysis for Wiedemann can be applied to Lanczos.

Probabilistic analysis by Eberly and Kaltofen 1996

Precondition (nonsymmetric) A and b as

Ã← G1 · A
Tr ·G2 · A ·G1 where G1 is random diagonal

G2 is random diagonal

b̃← G1 · A
Tr ·G2 · b + Ã · y where y is a random vector

Then for Ã, b̃ and all wi+1 6= 0 we have 〈wi+1, wi+1〉Ã 6= 0

and a solution is found with probability ≥ 1− 11n2−n
2|F|

Computational cost: n black box and n transpose black box calls.

Coppersmith’s 1992 blocking

Use of the block vectors x ∈ F
n×β in place of u

z ∈ F
n×β in place of v

ai = xTrAi+1z ∈ F
β×β, 0 ≤ i < 2n/β + 2.

Find a vector polynomial c`λ
`+· · ·+cdλ

d ∈ F
β[λ], d = dn/βe :

∀ j ≥ 0 :

d∑

i=`

aj+ici =

d∑

i=`

xTrAi+j Azci = 0 ∈ F
β×β

n

n

β

n
β β

1

n
x

z

Then, analogously to before, with high probability

ŵ =

d∑

i=`

Ai−` zci 6= 0, A`+1ŵ =

d∑

i=`

AiAzci = 0 ∈ F
n

Advantages of blocking

1. Parallel coarse- and fine-grain implementation

1

n

z

j

Ai+
x

n

ai

j

β

β

=

The jth processor computes the jth column of the sequence of
(small) matrices.

2. Faster sequential running time:
multiple solutions [Coppersmith; Montgomery 1994];
1 + ε matrix times vector ops [Kaltofen 1995];
determinant [Kaltofen & Villard 2000];
charpoly of sparse matrix [Villard & Storjohann 2001]

3. Better probability of success [Villard 1997]

Analysis of blocking

All vector polynomials that generate {ai} form a module over F[λ].

β vectors of minimal degree determinant from a F[λ]-basis

A matrix canonical (Popov, Hermite) version of the basis defines
a unique minimal polynomial c0 + c1λ + · · · + cdλ

d ∈ F
β×β[λ]

From (I − λB)−1 = I + Bλ + B2λ2 + · · ·
xTr(I − λB)−1y(cd + · · · + c0λ

d) = R(λ) ∈ F[λ]β×β

we obtain a matrix Padé approximation (“realization”)

xTr(I − λB)−1y =
∑

i aiλ
i = R(λ)(cd + · · · + c0λ

d)−1

Computation of the matrix linear generator

Explicitly in Popov form by block Berlekamp/Massey algorithm
[Coppersmith 1994, Thomé 2001] or implicitly in a block Lanczos
version

Explicitly by a power Hermite-Padé approximation
[Beckermann & Labahn 1994]

By a block Toeplitz solver [Kaltofen 1995]

Implementations

By Coppersmith, Kaltofen & Lobo, Montgomery, Dumas, Brent,...

The LinBox group [Canada: UWO, Calgary; France: ENS Lyon,
IMAG Grenoble; USA: Delaware, NCSU, Washington Coll. MD]:
A generic C++ library for black box linear algebra, including in-
teger problems

Open Problems

Large fields: Compute the characteristic polynomial
Certify the minimal polynomial
LinSolve1 ≤ LinSolve0

Small fields: Compute the determinant, rank of a sparse/blackbox
matrix without O(log n) slowdown

