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PRESS RELEASE 12 OCTOBER 1999
The Prize I Further reading I The laureates 

The Royal Swedish Academy of Sciences has awarded

the 1999 Nobel Prize in Physics 
jointly to 

Professor Gerardus ’t Hooft , University of Utrecht, Utrecht, the Netherlands,
and 
Professor Emeritus Martinus J.G. Veltman, University of Michigan, USA,
resident in Bilthoven, the Netherlands. 

The two researchers are being awarded the Nobel Prize for having placed particle
physics theory on a firmer mathematical foundation. ... 

The Academy’s citation:
"for elucidating the quantum structure of electroweak interactions in physics."

... 
One person who had not given up hope of being able to renormalize non-abelian
gauge theories was Martinus J.G.Veltman. At the end of the 1960s he was a
newly appointed professor at the University of Utrecht. Veltman had developed
the Schoonschip computer program which, using symbols, performed algebraic
simplifications of the complicated expressions that all quantum field theories
result in when quantitative calculations are performed. Twenty years earlier,
Feynman had indeed systematised the problem of calculation and introduced
Feynman diagrams that were rapidly accepted by researchers. But at that time
there were no computers. Veltman believed firmly in the possibility of finding a
way of renormalizing the theory and his computer program was the cornerstone
of the comprehensive work of testing different ideas.



Overview

1. Faster algorithms:
counting bit operations vs. counting arithmetic operations

2. Imprecise inputs
With PhD student Markus Hitz

3. Lattice basis reduction

4. Component technology
With PhD student Angel Dı́az

5. Uncertain results
With PhD student Wen-shin Lee



1. Linear Algebra

Strassen’s [1969] O(n2.81) matrix multiplication algorithm

m1 ← (a1,2 − a2,2)(b2,1 − b2,2)
m2 ← (a1,1 + a2,2)(b1,1 + b2,2)
m3 ← (a1,1 − a2,1)(b1,1 + b1,2)
m4 ← (a1,1 + a1,2)b2,2) a1,1b1,1 + a1,2b2,1 = m1 + m2 −m4 + m6
m5 ← a1,1(b1,2 − b2,2) a1,1b1,2 + a1,2b2,2 = m4 + m5
m6 ← a2,2(b2,1 − b1,1) a2,1b1,1 + a2,2b2,1 = m6 + m7
m7 ← (a2,1 + a2,2)b1,1) a2,1b1,2 + a2,2b2,2 = m2 −m3 + m5 −m7

Problems reducible to matrix multiplication:
linear system solving [Bunch and Hopcroft 1974],...

Coppersmith and Winograd [1990]: O(n2.38)



Life after Strassen: black box linear algebra

The black box model of a matrix

y ∈ Kn

−−−−−→ A · y ∈ Kn

−−−−−−−→

A ∈ Kn×n singular
K an arbitrary, e.g., finite field

Perform linear algebra operations, e.g., A−1b [Wiedemann 86] with

O(n) black box calls and

n2(log n)O(1) arithmetic operations in K and
O(n) intermediate storage for field elements



Flurry of recent results

Lambert [96], Teitelbaum [98], relationship of Wiedemann
Eberly & Kaltofen [97] and Lanczos approach

Villard [97] analysis of block Wiedemann
algorithm

Giesbrecht [97] and computation of integral
Mulders & Storjohann [99] solutions

Giesbrecht, Lobo & Saunders [98] certificates for inconsistency
Chen, Eberly, Kaltofen, butterfly network, sparse and

Saunders, Villard & Turner [2K] diagonal preconditioners
Villard [2K] & Storjohann [01] characteristic polynomial

Diophantine solutions
by Giesbrecht:
Find several rational solu-
tions.

A(1
2x

[1]) = b, x[1] ∈ Zn

A(1
3x

[2]) = b, x[2] ∈ Zn

gcd(2, 3) = 1 = 2 · 2− 1 · 3
A(2x[1] − x[2]) = 4b− 3b = b



Life after Strassen: bit complexity

Linear system solving x = A−1b where A ∈ Zn×n and b ∈ Zn :

With Strassen [McClellan 1973]:

Step 1: For prime numbers p1, . . . pk Do

Solve Ax[j] ≡ b (mod pj) where x[j] ∈ Z/(pj)

Step 2: Chinese remainder x[1], . . . , x[k] to Ax̄ ≡ b (mod p1 · · · pk)

Step 3: Recover denominators of xi by continued fractions of
x̄i

p1 · · · pk
.

Length of integers: k = (n max{log ‖A‖, log ‖b‖} )1+o(1)

Bit complexity: n3.38 max{log ‖A‖, log ‖b‖}1+o(1)



With Hensel lifting [Moenck and Carter 1979, Dixon 1982]:

Step 1: For j = 0, 1, . . . , k and a prime p Do

Compute x̄[j] = x[0] + px[1] + · · · + pjx[j] ≡ x (mod pj+1)

1.a. b[j] =
b− Ax̄[j−1]

pj
=

b− (Ax̄[j−2] + Apj−1x[j−1])

pj

1.b. x[j] ≡ A−1b[j] (mod p) reusing A−1 mod p

Step 3: Recover denominators of xi by continued fractions of
x̄

[k]
i

pk
.

With classical matrix arithmetic:

Bit complexity of 1.a:n(n max{log ‖A‖, ‖b‖})1+o(1) + n2(log ‖A‖)1+o(1)

Total bit complexity: (n3 max{log ‖A‖, log ‖b‖} )1+o(1)



Note: the complexity of computing a floating-point solution to a
linear system and the complexity of computing the exact solution
of a linear system with classical matrix arithmetic are asymptoti-
cally the same.

New results:

– bit complexity of the determinant: O(n2.697 log ‖A‖)
[Kaltofen & Villard 2001]

– division-free complexity of determinant: O(n2.697) additions,
subtractions, and multiplications [Kaltofen & Villard 2001]

– bit complexity of linear systems: O(n2.5 log max{‖A‖, ‖b‖})
[Villard 2001]



Problem 1
Improve the bit complexity of algorithms for the determinant,
resultant, linear system solution, over the integers.



2. Factorization of nearby polynomials over the complex numbers

81x4 + 16y4 − 648z4 + 72x2y2 − 648x2 − 288y2 + 1296 = 0

(9x2 + 4y2 + 18
√

2 z2 − 36)(9x2 + 4y2 − 18
√

2 z2 − 36) = 0

81x4 + 16y4 − 648.003z4 + 72x2y2 + .002x2z2 + .001y2z2

− 648x2 − 288y2 − .007z2 + 1296 = 0



Problem 2 [Kaltofen LATIN’92]
Given is a polynomial f(x, y) ∈ Q[x, y] and ε ∈ Q.

Decide in polynomial time in the degree and coefficient size if
there is a factorizable f̃ (x, y) ∈ C[x, y] with

‖f − f̃‖ ≤ εand deg(f̃ ) ≤ deg(f),

for a reasonable coefficient vector norm ‖ · ‖.

Note: fast algorithms are known for exact factorization
[Kaltofen 1985, Shuhong Gao 1999]



Theorem [Hitz, Kaltofen, Lakshman ISSAC’99]
We can compute in polynomial time in the degree and coef-
ficient size if there is an f̃ (x, y) ∈ C[x, y] with a factor of a
constant degree and ‖f − f̃‖2 ≤ ε.



Numerical algorithms

Conclusion on my exact algorithm [JSC 1985]:

“D. Izraelevitz at Massachusetts Institute of Technology has
already implemented a version of algorithm 1 using complex
floating point arithmetic. Early experiments indicate that the
linear systems computed in step (L) tend to be numerically
ill-conditioned. How to overcome this numerical problem
is an important question which we will investigate.”

Stetter, Huang, Wu and Zhi [ISSAC’2K]: Hensel lift factor combi-
nations numerically and eliminate extraneous factors early

Corless, Kotsieras, van Hoeij, Watt [ISSAC’01]: use deformation
theory to construct factors numerically



Univariate Problem: Given f ∈ C[z] and α ∈ C.
Find f̃ ∈ C[z],such that

f̃(α) = 0 , and ‖f − f̃‖ = min .

Let

f(z) = anzn + an−1z
n−1 + · · · + a1z + a0

f̃ (z) = (z − α) (un−1z
n−1 + un−2z

n−2 + · · · + u0)

= un−1z
n + (un−2 − α)zn−1 + · · · + (u0 − αu1)z − αu0

In terms of linear algebra:

‖f − f̃‖ = min
u∈Cn

∥∥∥∥∥


−α 0

1 −α
. . . . . .

0 1 −α
1




︸ ︷︷ ︸
P




u0
u1
...

un−1




︸ ︷︷ ︸
u

−




a0
a1
...

an−1
an




︸ ︷︷ ︸
b

∥∥∥∥∥

(1)



(1) is an over-determined linear system of equations:

Linear program, if ‖ · ‖ is the

{
∞-norm, or

1-norm

Least squares problem, if ‖ · ‖ is the 2-norm (Euclidean).

Solutions for the 2-norm in closed form:

N min(α) = ‖f − f̃‖2 =
f(α)f(α)∑n
k=0(αα)k

, fj − f̃j =
(α)jf(α)∑n
k=0(αα)k

(also derived in Corless et al. [ISSAC’95] via SVD)



Constraining a Root Locus to a Curve

Let Γ be a piecewise smooth curve with finitely many segments,
each having a parametrization γk(t) in a single real parameter t.

For a given polynomial f ∈ C[z], we want to find a minimally
perturbed polynomial f̃ ∈ C[z] that has (at least) one root on Γ.

Parametric Minimization

We substitute the parametrization γk(t) for the indeterminate α
in N min(α). The resulting expression is a function in t ∈ R.

It attains its minima at its stationary points. We have to compute
the real roots of the derivative.

The derivative of the norm-expression is determined symbolically,
but the roots can be computed numerically.



Bivariate factorization

Given f =
∑

fi,jx
iyj ∈ C[x, y] absolute irreducible, find

f̃ = (c0 + c1x + c2y)u(x, y) ∈ C[x, y], deg(f̃ ) ≤ deg(f),

such that ‖f − f̃‖2 is minimal.
(“nearest polynomial with a linear factor”).

Approach: minimize parametric least square solution in the real
and imaginary parts of the ci = αi + βi i.
→ must minimize least squares solution with 6 parameters.
→ yields polynomial system with a fixed number of variables,
hence polynomial time.



3. Lattice basis reduction

π =

∞∑
i=0

1

16i

(
4

8 i + 1
− 2

8 i + 4
− 1

8 i + 5
− 1

8 i + 6

)

Derivation by lattice reduction [Bailey&Borwein&Plouffe 1995]∫ 1

0

yk−1

1− y8

16

dy =

∫ 1

0

∞∑
i=0

yk−1

(
y8

16

)i

dy =

∞∑
i=0

1

16i

∫ 1

0
y8i+k−1dy

=

∞∑
i=0

1

16i(8i + k)

Maple takes over



> latt := proc(digits)

> local k, j, v, saved_Digits, ltt;
> saved_Digits := Digits; Digits :=
> digits;

> for k from 1 to 8 do

> v[k] := [];
> for j from 1 to 10 do v[k] := [op(v[k]),
> 0]; od;

> v[k][k] := 1;

> v[k][10] := trunc(10^digits *

> evalf(Int(y^(k-1)/(1-y^8/16),

> y=0..1, digits), digits));

> od;

> v[9] := [0,0,0,0,0,0,0,0,1,

> trunc(evalf(Pi*10^digits,digits+1))];

> ltt := [];

> for k from 1 to 9 do ltt:=[op(ltt),evalm(v[k])];od;

> Digits := saved_Digits;

> RETURN(ltt);

> end:



> L := latt(25);

L := [[1, 0, 0, 0, 0, 0, 0, 0, 0, 10071844764146762286447600],

[0, 1, 0, 0, 0, 0, 0, 0, 0, 5064768766674304809559394],

[0, 0, 1, 0, 0, 0, 0, 0, 0, 3392302452451990725155853],

[0, 0, 0, 1, 0, 0, 0, 0, 0, 2554128118829953416027570],

[0, 0, 0, 0, 1, 0, 0, 0, 0, 2050025576364235339441503],

[0, 0, 0, 0, 0, 1, 0, 0, 0, 1713170706664974589667328],

[0, 0, 0, 0, 0, 0, 1, 0, 0, 1472019346726350271955981],

[0, 0, 0, 0, 0, 0, 0, 1, 0, 1290770422751423433458478],

[0, 0, 0, 0, 0, 0, 0, 0, 1, 31415926535897932384626434]]



> readlib(lattice):

> lattice(L);

[[−4, 0, 0, 2, 1, 1, 0, 0, 1, 5], [0,−8,−4,−4, 0, 0, 1, 0, 2, 5],

[−61, 582, 697,−1253, 453,−1003,−347,−396, 10, 559],

[−333, 966, 324,−1656,−56, 784, 1131,−351,−27, 255],

[429, 714,−1591, 778,−517,−1215, 598, 362,−87, 398],

[−1046,−259,−295,−260, 1286, 393, 851, 800, 252,−1120],

[494, 906,−380,−1389, 1120, 1845,−1454,−926,−218, 400],

[1001,−1099, 422, 1766, 1405,−376, 905,−1277,−394,−30],

[−1144, 491,−637,−736,−1261,−680,−1062,−1257, 637,−360]]

> g := (8*y + 4*y^2 + 4*y^3 - y^6)/(1-y^8/16);

g :=
8 y + 4 y2 + 4 y3 − y6

1− 1

16
y8

> int(g, y=0..1);

2 π



Goldreich&Goldwasser&Halevi [1997] public key crypto system

Public key: Lattice basis B (rows Bi are basis vectors).

Private key: reduced basis C for lattice spanned by B.

Clear text is represented as a vector x with small integer entries.

Encoded message: y = x +
∑

i riBi where
∑

i riBi is a random
vector in the lattice.

Decryption based on Babai algorithm [1985] for nearest lattice
point: Write y =

∑
i siCi with si ∈ Q. Then

∑
i nearest-integer(si)Ci

is a near lattice point, probably
∑

i riBi.



Problem 3
Devise a public key crypto-system that is based on diophantine
linear algebra but that is safe from lattice reduction.



4. Plug-and-play systems

Maple
Mathe-
matica

Application
Program

‘‘middle-ware’’

of new algorithms
implementation

NTL SAC Lib Linpack

programming
‘‘generic’’

‘‘plug-and-
play’’ soft-
ware

Problem solving environ’s: end-user can easily custom-make sym-
bolic software



Example: FoxBox [Dı́az and K 1998]

# Call FoxBox server from Maple

> SymToeQ := BlackBoxSymToe( BBNET_Q, 4, -1, 1.0 ):

> SymToeZP := BlackBoxSymToe( BBNET_ZP, 4, -1, 1.0 ):

> FactorsQ := BlackBoxFactors( BBNET_Q, SymToeQ, Mod, 1.0,

Seed ):

> FactorsZP := BlackBoxHomomorphicMap( BBNET_FACS, FactorsQ,

SymToeZP ):

// construct factors of a symmetric Toeplitz determinant in C++

typedef BlackBoxSymToeDet< SaclibQ, SaclibQX > BBSymToeDetQ;

typedef BlackBoxFactors< SaclibQ, SaclibQX,

BBSymToeDetQ > BBFactorsQ;

BBSymToeDetQ SymToeDetQ( N );

BBFactorsQ FactorsQ( SymToeDetQ, Probab, Seed, &MPCard );



Software Design Issues

Plug-and-play

• Standard representation for transfer: MP, OpenMath, MathML

• Byte code for constructing objects vs. parse trees

•Visual programming environments for composition

Generic Programming

• Common object interface (wrapper classes),

e.g., K::random generator(500)

• Storage management vs. garbage collection

•Algorithmic shortcuts into the basic modules

• Parallel distribution of computation
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Problem 4
Devise a plug-and-play and generic programming methodology
for symbolic mathematical computation that is widely adopted
by the experts in algorithm design, the commercial symbolic
software producers, and the outsider users.

MathML examples courtesy Stephen M. Watt.



5. Will our systems guarantee their answers?

Maple 6 allows calls to NAG numeric library routines

Basic polynomial algorithms with floating point coefficients are
under development



> # Example by Corless and Jeffrey

> f := 1/(sin(x) + 2);

f :=
1

sin(x) + 2

> g := int(f, x);

g :=
2

3

√
3 arctan(

1

3
(2 tan(

1

2
x) + 1)

√
3)

> plot(g, x=-5..5);

–1 6
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1.6

1.8

–4 –2 2 4
x



Early termination strategies

Early termination in Newton interpolation

For i ← 1, 2, . . . Do

Pick random pi and from f(pi)

compute

f [i](x) ← c0 + c1(x− p1) + c2(x− p1)(x− p2) + · · ·
≡ f(x) (mod (x − p1) · · · (x − pi))

If ci = 0 stop.

End For

Threshold η :
In order to obtain a better probability, we require ci = 0 more
than once before terminating.



The early termination of Ben-Or/Tiwari’s interpolation algorithm.

If p1, . . . , pn are chosen randomly and uniformly from a subset S
of the domain of values then for the linearly recurrent sequence

ai = f(pi
1, . . . , p

i
n), i = 1, 2, . . .

the Berlekamp/Massey algorithm encounters ∆ = 0 (when
2L < r) the first time for r = 2t + 1 with probability no less than

1− t(t + 1)(2t + 1) deg(f)

6 · cardinality(S)
,

where t is the number of terms of f .

Threshold ζ:
In order to obtain a better probability, we require ∆ = 0 (when
2L < r) more than once before terminating.



Show Maple worksheet now.



Problem 5
Provide reasonable correctness specifications for our systems
in the presence of floating point numbers, randomizations, and
multivalued functions.


