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Abstract. Sparse and structured matrices over finite fields occur in many settings.
Sparse linear systems arise in sieve-based integer factoring and discrete logarithm
algorithms. Structured matrices arise in polynomial factoring algorithms; one ex-
ample is the famous Q-matrix from Berlekamp’s method. Sparse diophantine linear
problems, like computing the Smith canonical form of an integer matrix or com-
puting an integer solution to a sparse linear system, are reduced via p-adic lifting
to sparse matrix analysis over a finite field.

In the past 10 years there has been substantial activity on the improvement of a
solution proposed by Wiedemann in 1986. The main new ingredients are faster pre-
conditioners, projections by an entire block of random vectors, Lanczos recurrences,
and a connection to Kalman realizations of control theory. My talk surveys these
developments and describe some major unresolved problems.

Bibliographic references for my talk

The transparencies of my talk on May 23, 2001 at the Sixth International
Conference on Finite Fields and Applications (Fq6) in Oaxaca, Mexico can
be retrieved from the web address http://www.math.ncsu.edu/~kaltofen/
bibliography/01/fq6.pdf. Following are various references to the literature
of the subjects that I discussed.

Integer factoring via sieving

The classical reference to relations discovery is [25, Section 4.5.4], where
references to Pomerance’s quadratic sieve method and Pollard’s number field
sieve method can be found. The information on the arising sparse linear
systems over F2 is for the RSA-120 challenge through private communication
with Arjen K. Lenstra, and for RSA-155 by sending email to challenge-rsa-
honor-roll@rsa.com. The latter email service also provides information on
future challenges.

Berlekamp’s factoring algorithm

The original paper is [3]. The Q-matrix is attributed to K. Petr in [33].
The asymptotically fastest version of Berlekamp’s algorithm is given in [22].
Textbook descriptions of the method can be found in [25,12].
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Black box matrices

The algorithmic significance of the linear operator view of matrices is well-
know in numerical linear algebra. The Lanczos and conjugate gradient algo-
rithms (see [15]) are sometimes referred to as “matrix-free” methods. The
original paper by Wiedemann is [39]. The term “black box matrix” seems to
have been coined first by [23].

Algorithms on structure matrices, like the Hilbert matrix and other Cauchy-
or Toeplitz-like matrices, have a rich theory and practice, see [32,31].

Wiedemann’s algorithm and applications

An essentially linear-time version of the Berlekamp/Massey algorithm can be
found in [4].

The certificates of inconsistency for sparse linear systesm are in [14]. Vil-
lard’s fast algorithm for the characteristic polynomial of a sparse matrix is in
[38]. An even faster algorithm by Villard and Storjohann, based on blocking,
is to be written up.

The relationship between the problems LinSolve0, i.e., computing a non-
zero vector in the nullspace, and LinSolve1, i.e., computing a solution to
a possibly singular inhomogeneous linear system, are first explored in [21].
The avoidance of nil-potent blocks by preconditioning for a solution of the
problem LinSolve1 is implicit in [11] and explicit in [5].

The new sparse diophantine linear system solvers are presented in [13,30].
Hensel lifting is applied to linear system solving in [28,8] and to sparse linear
systems in [21]. The fast determinant algorithms for dense integer matrices,
based on Wiedemann’s determinant algorithm, are in [24].

Lanczos’s algorithm

Connections between the Wiedmann algorithm and the Lanczos algorithm are
discussed in [27,11,34]. Dornstetter discusses the interpretation of the Berle-
kamp/Massey algorithm as Euclid’s algorithm [9]. Gutknecht relates Lanczos
recurrences to Padé approximations [16]. Early termination for the Wiede-
mann algorithm when the minimum polynomial has a low degree requires
preconditioning and is due to Austin Lobo (cf. [19]).

Block methods

Projections by a block of vectors are analyzed in [6,7,29,17,36,37]. The dif-
ferent approaches for computing the matrix linear generator can be found in
[7,2,17,35]. Multivariable realizations from control theory are applied to the
block Wiedemann algorithm in [36,37]. A recent numerical treatment of the
block Lanczos method is in [1].
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Implementations

Austin Lobo’s parallel implementation of the block Wiedemann algorithm is
discussed in [20], Jean-Guillaume Dumas’s in [10]. Information on the Lin-
Box library project can be found at the web site www.linalg.org.

It appears to me that for the solution of a sparse linear system over a
finite field of small or large cardinality, the (bi-directional non-symmetric)
block Lanczos algorithm is superior to the block Wiedemann algorithm, the
reason being that Wiedemann’s bi-linear block projections for computing the
sequence of low dimensional matrices and the subsequent step of evaluating
the matrix polynomial linear generator are performed in the block Lanczos
algorithm utilizing a single set of matrix-times-vector products. The block
algorithms seem superior to the unblocked ones not only in the parallel set-
ting but also as sequential methods, because they have a higher probability
of success [36,37] and can reduce the number of matrix-times-vector products
[17, Corollary after Theorem 7]. However, the block Wiedemann algorithm
appears more efficient for obtaining the minimal polynomial and other infor-
mation of a black box matrix, like its rank.

Open problems

The problem of computing the characteristic polynomial of a sparse or black
box matrix is Problem 3 in [18].
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33. Št. Schwarz. On the reducibility of polynomials over a finite field. Quart. J.

Math. Oxford Ser. (2), 7:110–124, 1956.
34. J. Teitelbaum. Euclid’s algorithm and the Lanczos method over finite fields.

Math. Comput., 67(224):1665–1678, October 1998.
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Mathématiques Appliquées de Grenoble, www.imag.fr, April 1997.

38. Gilles Villard. Computing the Frobenius normal form of a sparse matrix. In
V. G. Ganzha, E. W. Mayr, and E. V. Vorozhtsov, editors, CASC 2000 Proc. the



6 Erich Kaltofen

Third International Workshop on Computer Algebra in Scientific Computing,
pages 395–407. Springer Verlag, 2000.

39. D. Wiedemann. Solving sparse linear equations over finite fields. IEEE Trans.
Inf. Theory, it-32:54–62, 1986.


