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Abstract

A deterministic polynomial time algorithm is presented for finding the distinct-
degree factorization of multivariate polynomials over finite fields. As a consequence,
one can count the number of irreducible factors of polynomials over finite fields in
deterministic polynomial time, thus resolving a theoretical open problem of Kaltofen
from 1987.
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1 Introduction

It is a classical result in algorithmic number theory that one may compute
the distinct-degree factorization of a univariate polynomial over a finite field
in deterministic polynomial time. For a polynomial f of degree n this is a
factorization of the form f = %_, fl¥ where f4 is the product of all irre-
ducible factors of f of degree d. That this may be done follows easily from
the theory of finite field extensions; von zur Gathen and Gerhard (1999, notes
to section 14) trace the standard algorithm back to C. F. Gauss. For polyno-
mials in more than one variable no such analogous theory is available. More-
over, a straightforward approach based upon computing the distinct-degree
factorization of some univariate image of a multivariate polynomial fails on
Swinnerton-Dyer-like polynomials. We take a different approach and present
a deterministic polynomial time algorithm for distinct-degree factorization of
multivariate polynomials over finite fields, which does not use any univariate
factorization subroutine. The algorithm is based upon earlier work of Kaltofen,
who was able to show that one may test irreducibility of multivariate poly-
nomials in deterministic polynomial time (Kaltofen 1987). In the same paper,
Kaltofen asks whether it is also possible to count the number of irreducible
factors; that this may be done is a consequence of our more general result. Our
main goal is to show that the distinct-degree factorization of multivariate poly-
nomials can be computed in deterministic polynomial time, so no attempt is
made to optimize the steps involved and the detailed time complexity analysis
is omitted as well. Our algorithm constitutes a theoretical de-randomization
result. Its running time both in terms of asymptotical complexity and in terms
of practicability is at this time not at all competitive with the existing ran-
domized approaches (Bernardin 1999; Gao 2003; Gao and Lauder 2002; Noro
and Yokoyama 2002; Bostan et al. 2004).

Our paper is organized in the following way. Section 2 contains preliminary re-
sults on linear systems over polynomial algebras. In Section 3 we describe an al-
gorithm for distinct-degree factorization, based upon the method of Kaltofen,
which uses a randomized univariate factoring algorithm as a subroutine. Next
in Section 4 we modify this algorithm using the methods of Section 2 so as to
remove the need for any univariate factorization, just computing geds instead.
As in (Kaltofen 1987) for simplicity we shall focus on the bivariate case; the
method extends to all multivariate polynomials, and we shall briefly discuss
this at the end of the paper.
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2 Linear systems over polynomial algebras

Let w € F,[z] be a squarefree polynomial of degree n with irreducible factors
w; € Fylz], 1 < j <r. In this section we consider homogeneous linear systems
over the ring

Ry = TFyl2]/(w(2)) = P F,y[2]/ (w;(2)).
j=1
The Berlekamp subalgebra of R,, is
By :={u € R, |u! = u}.

We have .
B, = P B.,
j=1

and each B, = F,. We shall denote by m,,, the projection of R,, onto the jth
summand F,[z]/(w;(z)), and also the restriction of this map to B,, (which has
codomain B, £ F,). Thus for u € R,,

Tw, (1) := u mod w;.

Let £ be a linear system given by
Lv=0 (1)

where L is a matrix with entries in R,, and v is a vector of unknowns. This
is a linear system over R,,, however we wish to find solutions v to this system
which have entries in B,,. Since B,, and R,, are vector spaces over F,, the set
of vectors v with entries in B,, which are solutions to £ forms an F,-vector
space.

Lemma 1 One may compute a vector space basis over Fy of solutions to (1)
with entries in By, in deterministic polynomial time.

Proof. We have an explicit basis for R,, over F,, namely 1, z, ..., 2"~ ! mod w

where n is the degree of w. All the entries of L are represented in this basis.
Since gth power is a linear map of R,, over F,, a basis for B,, over I, can be
computed in deterministic polynomial time ((Butler 1954; Lidl and Nieder-
reiter 1983); the idea goes back to Karel Petr in 1937 as cited in (Schwarz
1956)). Suppose a basis for B, is found to be by,...,b. € R, where 7 is the
number of irreducible factors of w. Let ¢ denote the number of columns in the
matrix L. Then any solution v = (vy,...,v)" € B’ to (1) must be of the
form
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where v;; € F, are unknowns. Now we plug v; into the equation (1) and
expand all the expressions in the basis 1,2, ..., 2" ! modulo w. This yields a
system of linear equations in v;; with coefficients in I, (each row of L gives n
linear equations). Solving this system, say by Gauss elimination, gives all the
solutions of (1) in B,,. Hence a basis for the solution space of (1) can be found
in deterministic polynomial time. X

We now suppose that ¢(z) is an irreducible factor of w. Given £ we denote by
L; the system of linear equations over R; obtained by projecting each matrix
entry in L under 7;. We shall call this the projected system of L under .
Once again we wish to find solutions of £; which are vectors over B; = F,.
Certainly any solution v of £ with entries in B,, will be sent under the map
on vectors induced by m; to a solution of £; with entries in B;. Moreover, this
solution will be non-zero if and only if #(z) does not divide all of the entries
in v thought of as polynomials in IF,[z]. Conversely, any solution to £; with
entries in B, can be lifted using the Chinese remainder theorem to a solution
for £ with entries in B,,. Precisely, we take the unique lifting of each entry
in the solution from B; to B,, which reduces to zero for all other projections

7ij (’w]' 7& t)
Our deterministic factoring method is based upon the following proposition.

Proposition 2 Let £ be any linear system over R,. Let S C {1,2,...,1}
with the following properties: The dimension over F, of the solution space in
By, of the projected system L, is non-zero if and only if j € S. Then we can
compute in deterministic polynomaial time the factorization

o= (I ( )

Proof. Compute a basis over F, for the space of solutions in B,, of the linear
system L. We claim the greatest common divisor h, say, of w and the poly-
nomials which occur as entries in the basis vectors is exactly [[xgs wr. To see
this, suppose 7 € S. Then there exists some non-zero solution v of the linear
system L, which can be lifted to a non-zero solution v of the linear system
L, as previously described. This solution of £ must lie in the span of the basis
vectors, and thus if w; divided all the entries in the basis vectors we would
have that w; divides all the entries in v, but then v = 0 — a contradiction.
Hence w; does not divide the greatest common divisor h. Now suppose that
k & S, and also that w; does not divide h. Then wy does not divide all the
entries in the basis vectors of the solution space of £. Thus there exists at least
one basis element which projects down to a non-zero solution of £,, under
Tw, — a contradiction. Thus h is as claimed.

Now one may compute the factor h in deterministic polynomial time using only
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the deterministic algorithm for computing bases for £ from Lemma 1, and the
Euclidean algorithm for greatest common divisors of univariate polynomials.
This completes the proof. K

3 Randomized factorization

We present a variation of Kaltofen’s algorithm (Kaltofen 1982; von zur Gathen
and Kaltofen 1985; Kaltofen 1985b). For simplicity, we only give the version
for bivariate polynomials, but his algorithm works for polynomials with any
number of variables.

Following tradition, we shall give the definition of a nice polynomial. We shall
say that f € F,[x,y] of total degree n is nice if f(x,0) is squarefree and of
degree n. We observe that the coefficient of z° of a nice polynomial f as a
polynomial in y has degree no more than n — 7, in particular that the leading
coefficient of f with respect to x is in IF;, and that factors of nice polynomials
must be also nice.

ArcoriTHM 3.1 [Randomized Distinct-Degree Factorization]

Input: A nice polynomial f(z,y) € F,[z,y] of total degree n. A positive integer
m such that f has no factors of degree strictly less than m.

Output: Nice polynomials g, h € F [z, y] and integer s which satisfy the fol-
lowing conditions: g is a product of s irreducible polynomials of degree m, and
f = gh where h has no factors of degree strictly less than m + 1. (Here s may
equal 0.)

Step 0: Set s «+— 0,9 < 1,h « f. Factor f(z,0) using a randomized algorithm
and for each irreducible factor ¢(z) of f(z,0) do Steps 1 and 2.

Step 1: [Approximate a root of f(z,y) in R¢[y]] where R, = F,[2]/(t(2)).]
Letting £ = (2n — 1)n and ag := z € R:, by Newton iteration compute
ai,...,ar € Ry such that

flag +ay+ ...+ ay”,y) = 0 mod 3"

For 0 <7 < m compute

oW = (ag + ...+ axy”) mod ¥ € R,[y].
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Step 2: [Try to find a polynomial of degree < m in F,[z,y] for which o) is
the approximation of one of its roots.|

Compute a basis over F, for solutions over B;(= F,) of the linear system L;
over R, given by

wi(y)a® = 0 mod y*+1, (2)

=0
where u;(y) € Fy[y], deg,(u;) < (m — i), and the coefficients of u;(y) are the
unknowns. If there exists a non-zero solution {u;} then it is unique up to
scaling by IF,. In which case define

=0

which is necessarily an irreducible factor of f of degree m whose reduction
modulo y is divisible by ¢(x). Now check whether u divides h, for we may have
already found this factor. If so set g «— gu, h < h/u and s « s+ 1.

Step 3: Output g, h, s.

The justification of the correctness of this algorithm follows from Theorem 1
in (Kaltofen 1985b), where it is shown that a nice polynomial of degree m
that has 3" a;% as a root of order O(y**!) is in fact an irreducible factor of f.
Comment must be made however on certain minor aspects which distinguish
this algorithm from the version in (Kaltofen 1985b). First, we take as an
input assumption that f does not have any factors of degree less than m,
whereas in (Kaltofen 1985b) m is increased from 1 until the first factor is
found. Second, we allow solutions to the linear system (2) in which w,,(y)
may be zero. In (Kaltofen 1985b) the author fixes u,,(y) to be the unity in
F,. We remove this restriction simply to make (2) a homogeneous system so
the theory developed in Section 2 directly applies. Indeed any solution will
necessarily have w,,(y) # 0, since factors of nice polynomials are nice. Note
that only those irreducible factors t(z) of degree < m can possibly yield non-
zero solutions to L£;. Also each such factor can yield at most one non-zero
solution, up to scaling, as t(z) can occur as a factor of the reduction modulo y
of at most one irreducible factor of f. This justifies the claim on the uniqueness
of u.

It is perhaps helpful to also explain precisely how Step 2 of the algorithm
relates to Section 2. The linear system £; may be made into a more explicit
linear system of the form “Lv = 0”7 by equating coefficients of each power of
y. In this case the matrix L would be of size (k+ 1) x ((m + 1)(m + 2)/2)
with entries from R;. Note also that the rather unwieldy sentence “Compute a
basis ...” could be replaced by “Solve the following linear system over F, ...".
However, we choose the more cumbersome version to preserve the analogy with
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Section 2, and in preparation for Section 4.

4 Deterministic distinct-degree factorization

As in (Kaltofen 1987), the problem is that the univariate factor ¢(z) is not
known to be computable in deterministic polynomial time. Following Kaltofen,
our approach is to work in

Ry =Fy[z]/(w(z)),  where w(z) = f(2,0),

and construct an analogous linear system to (2), only with solutions as vectors
over the Berlekamp algebra B,, of R,,. We begin with nice polynomials.

ALGORITHM 4.1 [Deterministic Distinct-Degree Factorization]

Input: A nice polynomial f(z,y) € F [z, y] of total degree n. A positive integer
m such that f has no factors of degree strictly less than m.

Output: Nice polynomials ¢g,h € F,[z,y] and an integer s which satisfy the
following conditions: g is a product of s irreducible polynomials of degree m,
and f = gh where h has no factors of degree strictly less than m + 1. (Note
that s may equal 0.)

Step 1: [Approximate a root of f(z,y)]
Define k := (2n —1)n, w(z) := f(2,0), Ry, := F,[z]/(w(2)), and ag := z € R,
By Newton iteration compute aq, as, ..., a, € R, such that

flag + a1y + ...+ apy”,y) = 0 mod 3"

For 0 < ¢ < m compute

o = (ag+ ... + apy®)’ mod y**L.

Since the coefficient ring R,, is not a field, care must be taken so that the itera-
tion does not divide by a zero-divisor. In (Kaltofen 1985a, Algorithm 2, Steps I
and N) it is shown that standard Newton iteration works as a consequence of
the squarefreeness of w(z) = f(z,0).

Step 2: [Try to find a polynomial of degree < m in By, y] for which a(" is
the approximation of one of its roots, where B, is the Berlekamp subalgebra
of R,

Compute a basis over I, of solutions over B,, to the homogeneous linear system
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L over R, given by,
3 wy)a® = 0 mod y*+, (3)
i=0

where the coefficients of u;(y) € By[y], deg,(u;) < (m — 1), are the unknowns.
If the dimension is zero then output “s =0, g =1, and h = 7 and halt.

Step 3: Compute the ged of w(z) and the entries of all basis elements of the
solution space of £, thought of as polynomials in F,[z]. This gives a factor of
w(z) = f(z,0), denoted by hg(z). Let go(z) be the cofactor of ho(z) in w(z).

Step 4: Switching z to =, we have the factorization f(z,0) = w(x) = go(z)ho(z).
Using Hensel lifting compute a factorization f = gh with g = go mod y and
h = ho mod y. Output ¢g and h, and also s := deg,(go(x))/m.

Proposition 3 Algorithm 4.1 outputs correctly and runs in deterministic poly-
nomaial time.

Proof. For each irreducible factor ¢(z) of w(z) = f(2,0), the linear system
(2) is the projection L, of the linear system £ defined by (3) under m;. (It was
briefly explained how to present these linear systems in the form “Lv = 07
in the second paragraph following Algorithm 3.1 and we will not labor this
point.) Now £; has a non-zero solution if and only if f has a factor of degree
< m whose reduction modulo y is divisible by #(z). Such a factor must have
degree exactly m and be irreducible by the input assumption on f.

Thus we are in the situation of Proposition 2 with w(z) = f(z,0). Let f1,..., f;
be all the irreducible factors of f(z,0), and let fI™(z,y) be the product of
all irreducible factors of f of degree m. By Proposition 2, we can compute in
deterministic polynomial time the factorization

re0 = (105 ) (T4 )

JjES k&S
—— ~——
go ho

where S is the set of all indices j such that the polynomial f;(z) divides
fIm(2,0). This means that go(x) = f™(z,0). Hence using Hensel lifting we
may recover in deterministic polynomial time this factor ¢ = fI" and its
cofactor h, say, in f. Finally, we can compute the number of irreducible factors
of f of degree exactly m as deg,([1;es fj(x))/m. This completes the proof.

Note that the above algorithm may be used to remove equal-degree irreducible
factors of a squarefree univariate polynomial in a somewhat different manner
from the usual method (von zur Gathen and Gerhard 1999, Section 14.2). It
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is illuminating to describe the main features of the algorithm in this special
case: Given such a univariate polynomial f € F,[z] C F,[z,y] we have that
w:= f mod y = f. In Step 1 of the algorithm the approximate root o of f in
R¢[[y]] is just the exact root z mod f. In Step 2, in the linear system £ we may
ignore higher powers of y, and the problem reduces to finding a sequence of
elements ug, u1, . .., u, € Ry such that 3" u;2" = 0 in R;. Now suppose that
f; is an irreducible factor of f of (total) degree m, and write f; = 37" vz
where v; € F,. For 0 <i <m, define u; as (0,0,...,v;,...,0) € By = &®]_,F,,
where the non-zero entry is in the jth position. Then the sequence u; gives
a solution to our linear system. For this reason essentially, in Step 3 one
recovers the product of all irreducible factors of degree m of the univariate
polynomial f. Note that the above approach does not seem to lead to an
asymptotically faster algorithm than the current best (von zur Gathen and
Shoup 1992; Kaltofen and Shoup 1998).

Algorithm 4.1 may be iterated in a straightforward manner to compute the
complete distinct-degree factorization of a nice bivariate polynomial. That is,
one starts with an arbitrary nice f taking m = 1 and by repeated application
of the algorithm with m incremented by one each time successively remove
factors of increasing degree. So we have

Proposition 4 There is an algorithm for computing the distinct-degree fac-
torization of any nice polynomial of total degree n in F,[x,y| which runs in
deterministic polynomial time in n and log(q).

Now we show how to reduce general polynomials to nice ones. Let f € Fy[x, y]
of total degree n. By the algorithm of Yun (1976), with well-known modifi-
cations when both partial derivatives vanish, one can compute its squarefree
decomposition in deterministic polynomial time. Hence we may assume that
f is already squarefree in F [z, y].

For small ¢, say ¢ < 2n?, since Berlekamp’s algorithm (Berlekamp 1967; Lidl
and Niederreiter 1983) for univariate polynomials runs in deterministic polyno-
mial time, Kaltofen’s original version of Algorithm 3.1 in the previous section
can factor f in deterministic polynomial time. So in this case one can certainly
find the distinct-degree factorization of f.

Assume that ¢ > 2n?. Consider the following substitution:

f= [z, y+ax+0)

for some a,b € F,. Certainly, any factorization of f gives a factorization of f
and vice versa. Note that the coefficient of 2™ in f is a polynomial h in a of
degree at most n, and

f(x,0) = f(z,ax +b).
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To make f nice, we just need to pick a € IF, such that h(a) # 0 and then find
b € F, such that

Resultant, (f(z, 0), aif(x, 0)) #0,

which is a nonzero polynomial in b of degree at most n(2n — 1) < 2n?, since f
is squarefree in Fy[x, y]. Hence both a and b can be found after trying at most
2n? elements in F,. So a and b can be found in deterministic polynomial time.
Combining with Proposition 4, we have the following result.

Theorem 5 There is an algorithm for computing the distinct-degree factor-
ization of any polynomial of total degree n in Fy|x,y| in deterministic polyno-
mial time in n and log(q).

When the distinct-degree factorization of f is computed, it is simple to find
the number of irreducible factors of f.

Corollary 6 There is an algorithm for counting the number of irreducible fac-
tors of any polynomial of total degree n in F [z, y] in deterministic polynomial
time in n and log(q).

This resolves an open problem posed in (Kaltofen 1987).

Note that having obtained a distinct total degree factorization, one may at-
tempt to find finer factorizations by considering different degree orderings. In
the algorithm we restrict to the standard degree ordering obtained by giving
both variables equal “weight” and defining the (total) degree of a polynomial
to be the greatest weight of any monomial. This is an inessential restriction,
and our algorithm works with different degree orderings, such as degree in x or
degree in y, or other degree orderings in which the two variables are assigned
different weights. The easiest way to obtain a nice input while accounting for
those degree orders is to work with a new main variable z and factor the
tri-variate polynomial f(z + z,az + b+ y). We give a brief explanation for a
weighted degree d = w, deg,(f) + w, deg,(f) with respect to integral weights
w, > 0 and wy, > 0. We can assume that all irreducible factors of f have total
degree m. We may also suppose that f, or equivalently f(z + x,az + b+ y),
has no irreducible factors of weighted degree < d. We then find the factor
of f(z,az +b) in F,[z] that lifts to the product of the irreducible factors
of f(z+z,az+b+y) of weighted degree d by solving the linear system corre-
sponding to (3), now for the coefficients of u;(x,y), with the restriction that
the weighted degree of the constant term ug(z,y) be d.

We should remark that the method applies equally well to polynomials with
more than two variables. For a polynomial with v variables and (total) de-
gree n, we assume the input size is O((”jv) log ¢) that is, we use dense multi-
variate representation. The Newton approximation in Step 1 of Algorithm 4.1

and the shift step (to make the polynomial nice) can be carried out similarly
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as in (Kaltofen 1985b) and geds of multivariate polynomials can be computed
in deterministic polynomial time (Brown and Traub 1971). Hence for any
polynomial with v variables and of total degree n over F, one can count the
number of its irreducible factors in deterministic polynomial time in the input
size.

Acknowledgements: We thank the three anonymous referees and Barry
Trager for their comments, which have substantially improved the presen-
tation of our ideas.
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